京公网安备 11010802034615号
经营许可证编号:京B2-20210330
判别分析介绍及其SPSS实现操作_数据分析师
判别分析(Discriminate Analysis)是市场研究的重要分析技术,也是多变量分析技术。判别分析是一种进行统计判别和分类的统计技术手段。它可以就一定数量的个体的一个分类变量和相应的其它多元变量的已知信息,确定分类变量与其它多元变量之间的数量关系,建立判别函数,并利用判别函数构建Biplot二元判别图(概念图)。同时,利用这一数量关系对其他已知多元变量的信息、但未知分组的子类型的个体进行判别分组。
判别分析属于监督类分析方法,例如:市场细分研究中,常涉及判别个体所属类型的问题,也常涉及不同品牌在一组产品属性之间的消费者偏好和认知概念,判别分析可以很好地对这种差异进行鉴别。并在低维度空间表现这种差异。
一般来讲,利用判别分析首先要明确变量测量尺度及变量的类型和关系;
因变量(dependent variable): 分组变量——定性数据(个体、产品/品牌、特征,定类变量)。
自变量 (independent variable):判别变量——定量数据(属性的评价得分,数量型变量)。
明确因变量后:我们需要明确我们分析的目的;
判别分析的应用领域非常广泛,例如:
一般来讲,判别变量是数量型测量尺度变量,分析样本个数至少比判别变量多两个,我们为了得到判别函数,经常需要把样本随机分成训练样本和检验样本等工作!
判别函数=分组数-1(一般情况)
下面我们通过案例来操作判别分析并得到判别分析图!
注:分别用第一和第二个判别函数为坐标轴作个体和中心的散点图——偏好图
我们得到数据集,描述了100家用户对某公司产品的7项指标的满意度打分,因变量Y-客户类型:1-新客户、2-犹豫后再次购买、3-再次直接购买;
我们分析的目的是期望得到不同类型的客户,在选购该公司产品方面的影响因素和偏好结构!这样我们可以根据客户类型进行有针对性的改进和营销策略!

7个自变量,也就是影响客户类型的因素指标:
当数据收集好后,这时候要考虑数据集是否有缺省值、是否有未分类等基本描述性统计分析;我们接下来选择判别分析:判别分析在分析菜单的分类子菜单下
在对话框中,我们分别定义自变量和分组变量,其中分组变量要说明组编码取值范围!(我们有三类)
判别分析与多元回归分析一样,都有逐步进入方式,主要目的是通过软件程序和统计算法决定进入判别函数的自变量重要性程度,我们因为需要进行判别图分析,我采用一起全部进入判别方程。
接下来,我们需要在统计量中选择Fisher函数;

我们希望看看判别效果如何,我们可以选择判别图形输出,可以让我们直观看到判别效果!

下面我们看分析结果:首先看判别图,

从图中很明显,看到三个组中心也就是客户类型,以及围绕着组中心的样本,说明分组判别还是不错的,当然这只是直观感觉,我们再看判别分析解释情况:
从表中我们看到,因为分组变量是三类,所以我们得到两个判别函数,其中第一判别函数解释了数据的85.1%,第二判别函数解释了14.9%;两个判别函数解释了100%;当然,两个判别函数直接具有显著的差异和判别力!
Fisher线性判别函数,我们主要用来构建判别方程,理论上说:如果我们知道某个客户在7个指标上的满意度打分,我们就可以估计出该客户应该是哪种类型的客户了!利用的是线性判别函数的得分,得分越大归到某类!
接下来我们考察判别图:(市场研究领域经常采用概念图-偏好图方法解释数据,特别说明的是:判别分析是最理想的构建判别偏好图的方法)
在判别分析结果中,我们可以得到两个典型判别函数的方程系数,分组变量的组中心坐标;我们利用7个指标和组中心的坐标进行偏好图制作,我们把这两张表输出到Excel里,然后再导入到SPSS软件中作散点图;

PASW Statistics也就是SPSS18.0功能有比较大的改进,当然作图方式也有了变化!
从上面的判别分析图中,大家是否会解读呢?
我们可以从圆心向组中心做向量,进行分析,看投影垂点等,解读方法大家可以参考前面的博客文章,《对应分析的七种解读方法》,偏好图和概念图都是一样的解读技术!文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15