
警惕!大数据营销中你丢了什么_数据分析师
什么是大数据营销?大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
大数据营销给企业的好处是什么
以往企业做营销宣传基本是一对多的模式,即选定一个大的平台,在这上面做营销推广,利用平台优势去影响更多的用户。这样的广告效果在早先还是比较有效,但是随着用户接受内容的渠道和生活习惯行为的变化,这样的粗放式营销手段已经对用户产生不了推动性效果。这时企业需要在有限的时间内,利用精准的营销内容来吸引目标消费者。
企业在以往会通过不同渠道收集到大量的用户数据,之前这样零散、独立的数据似乎对于企业作用并不大,但是现在技术分析能力的加强,让企业可以通过这些数据对用户特征进行挖掘和分析。
在数据分析的基础上会得到用户的个性,帮助企业定位受众目标用户,在推广营销内容的时候会做精准拼配,这样做的好处是让营销内容更加有针对性,可以满足用户的需求,而不是和用户本身需求无关的内容。
比如时趣为宝洁做的营销案例,首先,对宝洁旗下七大品牌用户进行了深度的洞察,调查发现目标消费者标签中,“男神”重合的比例尤为突出,于是一个以“男神”为着力点的创意,拉开了一场由线下到线上的遥相呼应的“买洗发水 送男神”的营销战役。
正是因为前期做了用户属性的精准定位,在短短一周内,本次活动不仅实现了580多万次的曝光及8500多次的媒体互动;更成功为1号店引流,拉动了销售量的提升。对比去年同期,宝洁洗发护发品类的销量提升了118%+。
从这可以看到大数据营销对于企业有很大的帮助,正是因为这样越来越多的企业开始做大数据营销,但一些企业在这中间发现自己的做的大数据营销似乎并不准确和有效,那么什么导致这样的结果呢?
过程数据的丢失让企业很受伤
营销过程中数据分为结果性数据和过程性数据,只现在多数企业在做大数据营销的时候往往关注的是营销过程中结果性数据,把结果性数据作为主导参考标准,只是结果性数据具有一定的欺骗性和不确定性。而很多企业营在销过程中大量的过程性数据被忽视,其实这样的过程数据对于营销依然十分重要。
举个例子来说,你是卖手机的企业,你关心今年有多少人买了我的手机,这个就是结果数据,这个数据是客户比较关心的。而这一年中买了手机的人有多少人在维修过程中和客服沟通了多少次,每次沟通时长是多少、沟通频率是多少以及在营销活动中用户表现出来的兴趣和潜在消费者都是过程性数据。
在营销过程中,这些中间的数据是没有被利用到,也没有记录下来,导致在营销中出现只有营销的行为,却无法衡量营销的效果。这好比是我就知道手机卖了,但不知道卖个了谁。如果把这些过程数据收集起来能够进行再营销的话(ReMarketing),转化率和投资回报率都会得到巨大的提升。
随着技术的发展,现在我们已经可以利用技术手段去追踪分析过程数据,并且不断进行优化,从而可以更好地衡量营销活动的效果,例如通过结合客户的业务场景和营销需求还可以更深入地挖掘这些数据的价值。
大数据能够让企业发现营销机遇,如潜在客户、新市场规律、回避经营风险等,根据用户的精准画像还可以及时调整营销策略和手段。但企业在运用大数据营销过程中的数据不能忽视,一定要将数据追踪和挖掘才能营销做的更理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07