
大数据究竟是什么4_数据分析师
大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。
云计算思想的起源是麦卡锡在上世纪60年代提出的:把计算能力作为一种像水和电一样的公用事业提供给用户。
如今,在Google、Amazon、Facebook等一批互联网企业引领下,一种行之有效的模式出现了:云计算提供基础架构平台,大数据应用运行在这个平台上。
业内是这么形容两者的关系:没有大数据的信息积淀,则云计算的计算能力再强大,也难以找到用武之地;没有云计算的处理能力,则大数据的信息积淀再丰富,也终究只是镜花水月。
那么大数据到底需要哪些云计算技术呢?
这里暂且列举一些,比如虚拟化技术,分布式处理技术,海量数据的存储和管理技术,NoSQL、实时流数据处理、智能分析技术(类似模式识别以及自然语言理解)等。
云计算和大数据之间的关系可以用下面的一张图来说明,两者之间结合后会产生如下效应:可以提供更多基于海量业务数据的创新型服务;通过云计算技术的不断发展降低大数据业务的创新成本。
如果将云计算与大数据进行一些比较,最明显的区分在两个方面:
第一,在概念上两者有所不同,云计算改变了IT,而大数据则改变了业务。然而大数据必须有云作为基础架构,才能得以顺畅运营。
第二,大数据和云计算的目标受众不同,云计算是CIO等关心的技术层,是一个进阶的IT解决方案。而大数据是CEO关注的、是业务层的产品,而大数据的决策者是业务层。
分布式处理系统可以将不同地点的或具有不同功能的或拥有不同数据的多台计算机用通信网络连接起来,在控制系统的统一管理控制下,协调地完成信息处理任务—这就是分布式处理系统的定义。
以Hadoop(Yahoo)为例进行说明,Hadoop是一个实现了MapReduce模式的能够对大量数据进行分布式处理的软件框架,是以一种可靠、高效、可伸缩的方式进行处理的。
而MapReduce是Google提出的一种云计算的核心计算模式,是一种分布式运算技术,也是简化的分布式编程模式,MapReduce模式的主要思想是将自动分割要执行的问题(例如程序)拆解成map(映射)和reduce(化简)的方式, 在数据被分割后通过Map 函数的程序将数据映射成不同的区块,分配给计算机机群处理达到分布式运算的效果,在通过Reduce 函数的程序将结果汇整,从而输出开发者需要的结果。
再来看看Hadoop的特性,第一,它是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。其次,Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
你也可以这么理解Hadoop的构成,Hadoop=HDFS(文件系统,数据存储技术相关)+HBase(数据库)+MapReduce(数据处理)+……Others
Hadoop用到的一些技术有:
说了这么多,举个实际的例子,虽然这个例子有些陈旧,但是淘宝的海量数据技术架构还是有助于我们理解对于大数据的运作处理机制:
如上图所示,淘宝的海量数据产品技术架构分为五个层次,从上至下来看它们分别是:数据源,计算层,存储层,查询层和产品层。
数据来源层。存放着淘宝各店的交易数据。在数据源层产生的数据,通过DataX,DbSync和Timetunel准实时的传输到下面第2点所述的“云梯”。
计算层。在这个计算层内,淘宝采用的是Hadoop集群,这个集群,我们暂且称之为云梯,是计算层的主要组成部分。在云梯上,系统每天会对数据产品进行不同的MapReduce计算。
存储层。在这一层,淘宝采用了两个东西,一个使MyFox,一个是Prom。MyFox是基于MySQL的分布式关系型数据库的集群,Prom是基于Hadoop Hbase技术的一个NoSQL的存储集群。
查询层。在这一层中,Glider是以HTTP协议对外提供restful方式的接口。数据产品通过一个唯一的URL来获取到它想要的数据。同时,数据查询即是通过MyFox来查询的。
最后一层是产品层,这个就不用解释了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05