京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不同角色眼中的数据分析_数据分析师
数据分析师:数据分析就是有针对性的收集、加工、整理数据,并采用统计和挖掘技术分析和解释数据的科学与艺术!
追星族:从你每天发的微博研究你喜欢哪个明星、是哪个星座的、喜欢吃什么买什么、大概几岁会嫁出去。
销售人员:从一大堆数据中提取到你想要的信息,描述数据特征,预测数据趋势,展示分析结果,最后告诉你什么商品好卖,什么商品不好卖,以及未来大体趋势等。
陷入爱河中的人:1、茫茫人海中,发现你生命中爱的那个人,进而根据对方的喜好,成功的展示了自己的优点,改进了自己的缺点,并且说服了对方的父母,承诺终身与ta为伴的一项工作; 2、你喜欢上一个姑娘,你会搜集她的兴趣、爱好、星座、闺密、乃至三围。。。等等各种信息吧,然后想自己怎么能搭讪上、约出来,碰壁了会继续找原因、想办法,这里面你都有在做数据分析呀。
IT:你应该对男的低调说自己是码农,对女的高调说自己是分析师!现在甭管是什么职业,加个师字就显得特牛B,比如策划师,揉奶师,面包师,会计师,调酒师,搬砖师等等。
超市售货员:我告诉别人:你买了牙膏我还会推荐你买牙刷,我就是做这样的工作的。
准爸爸:可以知道刚当爹的男人买尿布时还可能顺便买点什么东西。
老公:每个月的月底,老婆问你,这个月的钱你都是怎么花的?你的回答就是数据分析。
儿女兼学生:从你爸的日常行为统计中推测你下次考试不及格他会用什么东西揍你。
数据哥:数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、数据分析、数据展现和撰写报告等6个阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05