京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据流式处理一个不能忽视的问题_数据分析师
这要从数据处理的基本面:内存、存储、数据谈起。
大家都知道,一个大数据集群是由很多台计算机连上网络组成的。计算机里面都有CPU、内存、硬盘,计算机通过网络交换数据执行分布计算工作。集群会按照规则,同时运行着一批执行不同工作的分布计算任务,每次分布计算任务处理的数据容量也不尽相同,少的几十几百M,多的几十几百G,更大的有时候会达到TB的规模(我们在各地部署的Laxcus集群时常处理TB级的数据)。如果当集群中某个时刻迸发出一个超大数据容量的计算任务,这些数据要分散到不同的计算机上去执行计算工作,这个总的数据容量超过集群的内存容量的时候,怎么办?
在存储模式下,这个问题很容易解决:拿硬盘来做缓存过渡。数据进来,检查一下它的尺寸,如果太大,或者一时半会儿处理过不来,就先放到硬盘保存起来。毕竟现在硬盘都已经做到TB级,不差钱的话,一台计算机还可以多配几个。能够利用的存储空间比内存大得多。
放到了流式处理模式下,这个问题就纠结了。如果数据进入后硬盘再处理,就和存储模式没啥区别了。如果不是这样,数据就会太多而内存不足,内存就要溢出,数据就要丢失。集群里任何一台计算机出现这样的故障,整个分布计算任务就是失败。
缓解这个问题的一个办法是升级计算机,CPU换成64位的,然后装更多的内存。原因是32位计算机内存上限是4G,一个集群里,如果都是32位计算机,同时出现几个TB计算任务,那得要多少台计算机?64位计算机可以装更多内存,这样计算机数量可以少些。还顺带提醒一下,虽然内存的价格现在比以前是大大便宜了,但是和硬盘相比,单位容量还是贵得多!这样的成本问题一般运营商会比较在意。另外,这只是暂时的解决办法,谁也不知道下一次的超大数据计算任务啥时候发生,和同时会有几个这样的超大计算任务发生。
比较靠谱的解决办法是在任务计算前,在数据量和集群内存之间做一个评估。当计算任务进来的时候,判断一下它携带数据的最大尺寸,如果集群的内存足够,就把这些内存"预分配"给这个计算任务(这个工作要细划到每一台计算机)。如果不够,就让它等着,直到其它计算任务完成工作,内存被回收,新的内存足够时,才放它执行工作。第二种办法和存储模式差不多,数据先放在硬盘里存着,然后也是等到内存足够了,再执行它的工作。当然,这两种办法都会降低流式处理的计算效率,但也是没有办法的办法,总比出现内存溢出、计算任务失败这样的故障好吧。
综上所述,流式处理是一种成本和效费比都高的计算模式。如果你是土豪,像BAT一样,有足够的银子,只关注数据处理的高性能,不在乎往基础设施上多撒几个钱,尽可以配上强劲的CPU、超大的内存和硬盘或者固态盘,万兆的光纤网络,这时候加上流式处理是上选。如果你是一穷人,缺银子,计算机的性能差,手上一把的32位老式计算机(我们有一个Laxcus集群现在还在用PentiumIII图拉丁芯片,就因为这家伙省电,老而弥坚!),内存有限,网络也不咋的,掏不起太多的电费,不计较数据计算的快和慢,那么凑合凑合,还是考虑存储模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29