京公网安备 11010802034615号
经营许可证编号:京B2-20210330
高清存储在安防大数据时代的应用_数据分析师
当前社会对数据的依赖是前所未有的,数据已变成与硬资产同等重要的资源。如何存储好、保护好、使用好海量的大数据,是安防行业面临的重要问题之一。
大数据时代
一、安防大数据的特征及现状
1、数据类型多样化,安防行业中主要的应用集中在视频监控、卡口抓拍、门禁告警等领域。基础的数据类型就包括视频、音频、图片、附属信息等。
2、数据的增长速度非常快,一个城市的安防数据来源,它可能有固定的摄像头,也有公安民警这种执法终端所产生的数据,那么在一个城市里面,它的点数就非常多,所以产生数据速度非常快,每天的数据是以几十个GB或者几百个GB为量来统计的。
3、数据体量非常大。
4、数据本身的价值。目前我国主要是利用数据来做一些视频的检索,在人工智能方面的利用还有待加强。
除此之外,安大数据最显著的特征是数据共享,提高数据处理能力。安防行业的大数据以视频监控为主,视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。
与科学计算、互联网相比,视频监控的大数据处理难度尤大,首先,视频录像是更原始的非文本非结构化的数据,必须经过复杂繁重的分析处理才能提取出文本结构化的数据进行下一步处理;其次视频录像相对其它形式数据的容量要大几个数量级,对传输、存储和计算的带宽要求更大。
二、大数据中的高清存储应用方案
大数据的应用可以分为五个层次:
第一个层面就要注重采集。安防数据的采集,目前虽然形成了一定的广度,但是深度还不够,必须做得更深、更广。
第二个层面是采集到的数据必须传到某一个数据中心去。现在很多摄像头的监控数据,只是在前端进行处理。
第三个层面是数据的存储,目前国内很少真正运用云平台和大数据技术去存储相关视频和安防数据。
第四个层面是数据的分析和处理。真正的数据分析和挖掘又分为四个层次:分析、统计、充分的挖掘和预测。在这几个层次里,国内主要做了数据分析这一层,其他的层次有待发展。
第五个层面是数据可视化。在安防可视化层面现在只是一些简单的统计报表的一些可视化。所以这里面存在很大的空间。可以通过应用最新的技术,包括云计算和大数据的技术,来提升中国安防的现状。目前安防大数据的核心技术,海量数据存储、海量数据搜索、智能图像分析等技术都在蓬勃发展中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16