京公网安备 11010802034615号
经营许可证编号:京B2-20210330
高清存储在安防大数据时代的应用_数据分析师
当前社会对数据的依赖是前所未有的,数据已变成与硬资产同等重要的资源。如何存储好、保护好、使用好海量的大数据,是安防行业面临的重要问题之一。
大数据时代
一、安防大数据的特征及现状
1、数据类型多样化,安防行业中主要的应用集中在视频监控、卡口抓拍、门禁告警等领域。基础的数据类型就包括视频、音频、图片、附属信息等。
2、数据的增长速度非常快,一个城市的安防数据来源,它可能有固定的摄像头,也有公安民警这种执法终端所产生的数据,那么在一个城市里面,它的点数就非常多,所以产生数据速度非常快,每天的数据是以几十个GB或者几百个GB为量来统计的。
3、数据体量非常大。
4、数据本身的价值。目前我国主要是利用数据来做一些视频的检索,在人工智能方面的利用还有待加强。
除此之外,安大数据最显著的特征是数据共享,提高数据处理能力。安防行业的大数据以视频监控为主,视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。
与科学计算、互联网相比,视频监控的大数据处理难度尤大,首先,视频录像是更原始的非文本非结构化的数据,必须经过复杂繁重的分析处理才能提取出文本结构化的数据进行下一步处理;其次视频录像相对其它形式数据的容量要大几个数量级,对传输、存储和计算的带宽要求更大。
二、大数据中的高清存储应用方案
大数据的应用可以分为五个层次:
第一个层面就要注重采集。安防数据的采集,目前虽然形成了一定的广度,但是深度还不够,必须做得更深、更广。
第二个层面是采集到的数据必须传到某一个数据中心去。现在很多摄像头的监控数据,只是在前端进行处理。
第三个层面是数据的存储,目前国内很少真正运用云平台和大数据技术去存储相关视频和安防数据。
第四个层面是数据的分析和处理。真正的数据分析和挖掘又分为四个层次:分析、统计、充分的挖掘和预测。在这几个层次里,国内主要做了数据分析这一层,其他的层次有待发展。
第五个层面是数据可视化。在安防可视化层面现在只是一些简单的统计报表的一些可视化。所以这里面存在很大的空间。可以通过应用最新的技术,包括云计算和大数据的技术,来提升中国安防的现状。目前安防大数据的核心技术,海量数据存储、海量数据搜索、智能图像分析等技术都在蓬勃发展中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27