
销售商与使用者:谁是大数据真赢家
数据一词最近几年热度不减,越来越多人谈论它,越来越多的公司开始在其中进行投资。
职业社交网站LinkedIn最近发布的一份针对其3.3亿用户档案分析报告显示,在2014年最热门的25项职业技能中,排名榜首的就是“统计分析和数据挖掘”。考虑到万物互联、云计算、智能设备、机器学习等不断涌现的科技潮流词汇以及由此积累的庞大数据,与大数据紧密相连的数据科学家受到职场热捧也就不难理解了。
从薪酬的角度来看,美国一项调查显示,2014年,数据科学家的平均年薪是12.3万美元,比上一年有大幅上升。Cloudera公司联合创始人、董事长、首席战略官Mike Olson在接受笔者采访时表示,该公司举办的认证培训已有5万多个学员,而在职场上,拥有一年Hadoop(一种大数据技术平台)经验的人,工资大概会增加14000美元。
事实上,类似Cloudera这样的大数据技术创业公司正是这一轮技术热潮的弄潮儿。Mike Olson称,自2008年创立以来,目前公司已有1300多家客户,估值超过50亿美元。
然而,如果谈及大数据赢家,这类大数据技术公司还不是其中的执牛耳者。
在中国,也有越来越多的公司将从大数据中获益。新年伊始即因李克强总理前来视察,并发出第一笔贷款业务而一炮走红的微众银行,就将是一个大数据的重度使用者。微众银行的整个服务均依托于互联网,其大数据系统汇集了40万亿条数据信息,从而在征信、担保等方面能获得与传统银行不一样的竞争力。
大数据应用的源起可以追溯到Google在2004年前后发布的三篇论文——MapReduce、Bigtable、GFS。在此基础上搭建的开源平台Hadoop,堪称全球大数据生态圈中最为核心的技术之一。
然而,由非营利组织管理的Hadoop平台,尽管推行开源模式,但企业并不是拿来就可以用,它需要经过进一步的加工和修缮,由此孕育了多家大数据商业开发公司,如Cloudera、MapR、Hortonworks等。这些公司的商业模式就是开发商业化的Hadoop分发版,并对外销售。
Cloudera、MapR、Hortonworks由此也被成为Hadoop市场的三驾马车。其中,Cloudera估值50亿美元,MapR在其最近一轮融资中估值超过7亿美元。而Hortonworks则在2014年12月实现了IPO,以每股16美元的价格发行了625万股股票,募集约1亿美元资金。按照1月5日收盘价26.14美元计,目前其市值为10.7亿美元。
在大数据生态圈中,这些销售Hadoop解决方案的大数据技术创业公司一直是聚光灯的焦点。他们毫无疑问是大数据赢家,得到风投和资本市场的垂青。
不过,如果从估值、股价表现和增长速度来看,应用型的大数据厂商似乎比这些技术型、基础设施层级的公司要更胜一筹。他们中的代表性企业包括Tableau、Qlik和MicroStrategy,其共同特点都是让数据变得更容易理解和消费。
比如说,Tableau成立于2003年,创始人是来自斯坦福的三位校友,三人都对数据可视化怀有很大的热情。数据可视化就是让枯燥的数据以简单友好的图表形式展现出来,是对数据分析的结果呈现。这家公司在2013年5月在纽交所上市,发行价31美元,募集资金2.542亿美元。根据1月5日收盘价84.74美元计算,目前其市值为58.8亿美元。
应用型厂商如果独辟蹊径,抓住一个细分市场做深做透,其市场价值将有很大的想象空间。这一点对于国内的大数据创业企业来说,更有参考意义。事实上,由于基础数据和操作系统的缺失,国内软件企业在传统计算时代亦是在应用层面才有所突破。
当然,如果仅是停留在服务提供商的角度来理解大数据,很显然无法完整理解这个市场——目前各类大数据厂商排名基本上都是基于这个维度。事实上,除了前文提及的两类大数据公司外,更加值得一提的是使用大数据的企业,他们堪称大数据的最大赢家。
目前全球估值超10亿美元的未上市科技企业(过去三年有风投注资)中,排名前十的几乎都是使用数据方面的能手。
其中,排名第一的小米,在最近一轮10亿美元融资中估值达450亿美元,其董事长雷军就在不久前接受媒体采访时直言:“如果我们不能用大数据技术转化出价值,那我们公司再撑下去就真的破产了……现在我扛得住,明年我也扛得住,后年我也扛得住,大后年要没价值的话,那我就破产了。”
排名第二的Uber估值412亿美元。一个打车软件之所以能获得这么高的估值,其背后的支撑亦离不开大数据。它能实时满足人、车、物的流动,用最少的车,实现最有效率的解决。而其平台上日积月累的人流、车流数据,在将来的货币化上则更具有想象空间。
从这个角度来看,真正高价值的大数据公司,或者说真正从数据中赚到大钱的公司,并不是那些销售Hadoop的公司。这些公司的特点是将数据视为一种资产。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01