京公网安备 11010802034615号
经营许可证编号:京B2-20210330
销售商与使用者:谁是大数据真赢家
数据一词最近几年热度不减,越来越多人谈论它,越来越多的公司开始在其中进行投资。
职业社交网站LinkedIn最近发布的一份针对其3.3亿用户档案分析报告显示,在2014年最热门的25项职业技能中,排名榜首的就是“统计分析和数据挖掘”。考虑到万物互联、云计算、智能设备、机器学习等不断涌现的科技潮流词汇以及由此积累的庞大数据,与大数据紧密相连的数据科学家受到职场热捧也就不难理解了。
从薪酬的角度来看,美国一项调查显示,2014年,数据科学家的平均年薪是12.3万美元,比上一年有大幅上升。Cloudera公司联合创始人、董事长、首席战略官Mike Olson在接受笔者采访时表示,该公司举办的认证培训已有5万多个学员,而在职场上,拥有一年Hadoop(一种大数据技术平台)经验的人,工资大概会增加14000美元。
事实上,类似Cloudera这样的大数据技术创业公司正是这一轮技术热潮的弄潮儿。Mike Olson称,自2008年创立以来,目前公司已有1300多家客户,估值超过50亿美元。
然而,如果谈及大数据赢家,这类大数据技术公司还不是其中的执牛耳者。
在中国,也有越来越多的公司将从大数据中获益。新年伊始即因李克强总理前来视察,并发出第一笔贷款业务而一炮走红的微众银行,就将是一个大数据的重度使用者。微众银行的整个服务均依托于互联网,其大数据系统汇集了40万亿条数据信息,从而在征信、担保等方面能获得与传统银行不一样的竞争力。
大数据应用的源起可以追溯到Google在2004年前后发布的三篇论文——MapReduce、Bigtable、GFS。在此基础上搭建的开源平台Hadoop,堪称全球大数据生态圈中最为核心的技术之一。
然而,由非营利组织管理的Hadoop平台,尽管推行开源模式,但企业并不是拿来就可以用,它需要经过进一步的加工和修缮,由此孕育了多家大数据商业开发公司,如Cloudera、MapR、Hortonworks等。这些公司的商业模式就是开发商业化的Hadoop分发版,并对外销售。
Cloudera、MapR、Hortonworks由此也被成为Hadoop市场的三驾马车。其中,Cloudera估值50亿美元,MapR在其最近一轮融资中估值超过7亿美元。而Hortonworks则在2014年12月实现了IPO,以每股16美元的价格发行了625万股股票,募集约1亿美元资金。按照1月5日收盘价26.14美元计,目前其市值为10.7亿美元。
在大数据生态圈中,这些销售Hadoop解决方案的大数据技术创业公司一直是聚光灯的焦点。他们毫无疑问是大数据赢家,得到风投和资本市场的垂青。
不过,如果从估值、股价表现和增长速度来看,应用型的大数据厂商似乎比这些技术型、基础设施层级的公司要更胜一筹。他们中的代表性企业包括Tableau、Qlik和MicroStrategy,其共同特点都是让数据变得更容易理解和消费。
比如说,Tableau成立于2003年,创始人是来自斯坦福的三位校友,三人都对数据可视化怀有很大的热情。数据可视化就是让枯燥的数据以简单友好的图表形式展现出来,是对数据分析的结果呈现。这家公司在2013年5月在纽交所上市,发行价31美元,募集资金2.542亿美元。根据1月5日收盘价84.74美元计算,目前其市值为58.8亿美元。
应用型厂商如果独辟蹊径,抓住一个细分市场做深做透,其市场价值将有很大的想象空间。这一点对于国内的大数据创业企业来说,更有参考意义。事实上,由于基础数据和操作系统的缺失,国内软件企业在传统计算时代亦是在应用层面才有所突破。
当然,如果仅是停留在服务提供商的角度来理解大数据,很显然无法完整理解这个市场——目前各类大数据厂商排名基本上都是基于这个维度。事实上,除了前文提及的两类大数据公司外,更加值得一提的是使用大数据的企业,他们堪称大数据的最大赢家。
目前全球估值超10亿美元的未上市科技企业(过去三年有风投注资)中,排名前十的几乎都是使用数据方面的能手。
其中,排名第一的小米,在最近一轮10亿美元融资中估值达450亿美元,其董事长雷军就在不久前接受媒体采访时直言:“如果我们不能用大数据技术转化出价值,那我们公司再撑下去就真的破产了……现在我扛得住,明年我也扛得住,后年我也扛得住,大后年要没价值的话,那我就破产了。”
排名第二的Uber估值412亿美元。一个打车软件之所以能获得这么高的估值,其背后的支撑亦离不开大数据。它能实时满足人、车、物的流动,用最少的车,实现最有效率的解决。而其平台上日积月累的人流、车流数据,在将来的货币化上则更具有想象空间。
从这个角度来看,真正高价值的大数据公司,或者说真正从数据中赚到大钱的公司,并不是那些销售Hadoop的公司。这些公司的特点是将数据视为一种资产。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22