京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读《大数据时代》:复杂世界的数据观_数据分析师
《大数据时代》给出的大数据时代的第二个特征,是“不是精准性,而是混杂性”。这是一个相当难以理解的分割方式。虽然看一个个的案例,读者似乎明白了,可是放下书,却又疑上心头:为什么大数据时代不要精准性?精准性与混杂性之间有必然的对立关系吗?
如果说第一个特征中的“随机样本”和“全体数据”(记得实际是数据库的概念)的概念我们还能够从迈尔大叔的叙述中得以澄清,这里的“精准性”和“混杂性”就要认真考证了。
何为精准性?
迈尔大叔有关精准性的论断,应该是对小数据时代数据匮乏的藐视:你们这帮屌丝,撅着屁股捡钢镚,俺们土豪100元从来都不要找零的!小数据时代数据少啊,每个数据都当个宝,斤斤计较数据的精度。
“执迷于精确性是信息缺乏时代和模拟时代的产物。在那个信息贫乏的时代,任意一个数据点的测量情况都对结果至关重要。所以,我们需要确保每个数据的精确性,才不会导致分析结果的偏差。”
我们来看看迈尔大叔提供的有关精准度的案列,后面讨论用得着。
1)量子力学的”测不准“原理;(测不准即不精准,可这和大数据时代哪是哪儿呀?)
2)桥梁压力检测数字增加1000倍,错误率也会增加;(怀疑“错误率”是“错误数”的表达错误。错误率是错误的比例吗?如果错误率随着数据数量的增加而增加,那大数据还会准确吗?或许我真的被大数据时代OUT了。)
3)语音识别呼叫中心投诉的错误;(终于能够理解一个案例了!)
4)葡萄园N个温度计测量温度;(这是通过统计增强精准度。)
5)Forrester认为“有时得到2加2约等于3.9的结果,也很不错了。”(没有背景资料,不敢妄加判断。不过总觉得心悬悬的,你是否担心生活在一个“2加2可以约等于3.9”的社会里呢?)
6)微软研究中心寻求改进Word程序中语法检查的方法;(这是利用大数据来改进分析的精准性!)
7)BP炼油厂无线感应器网络数据;(又是一个大数据降低统计误差的案例。)
8)Facebook上的“4000个赞”和Gmail“2小时”计时;(神一般的大数据及其不精准性说明。)
9)Hadoop与Visa的算法。(这是一个如何牺牲分析结果的精准性以缩短所需分析时间的案例。回到迈尔大叔有关大数据时代的第一个特征,即使有了全体数据,必要时也要牺牲部分数据而争取时间。)
到此,可能能够理解为什么读这一小节这么困难了:迈尔大叔想告诉我们精准性不重要,可是他举的例子,却实在是有点“暧昧”不清。他究竟是想说数据的精准性还是数据分析结果的精准性呢?
何为混杂性?
“不是精准性,而是混杂性”。与混杂性所对立的精准性,原来不是迈尔大叔在描述精准性时以“2+2可以约等于3.9”时告诉我们的那个数据分析结果的精准性,而是数据的精准性。
“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。”
我们看到,在谈到大数据时代的混杂性时,迈尔大叔基本上都在谈论数据的混杂性(而不是数据的不精准性)。我们来看看混杂性的案例:1)对IBM称呼的混杂;2)谷歌翻译语料库;3)MIT研究项目;4)Flicker图片标签;5)新的数据库设计;6)ZestFinance。
说实在话,有关大数据时代混杂性的问题,因为有了前面对精准性的描述,一下子还真是被迈尔大叔给蒙住了,反复读了数遍,才理解。原来迈尔大叔所说的混杂性,是指数据格式的不统一。上面6个案例中,除ZestFinance外,基本上是讲数据格式的不统一或者数据来源纷杂。这的确是我们这个时代数据的特征。恭喜迈尔大叔终于说对了!
而ZestFinance则是指在数据不完整或者数据有错误的情况下如何处理数据的问题,这和大数据似乎没有太大的关系,与数据的混杂性也没关系。不过我们在此回忆一下,似乎除了随机样本问题外,迈尔大叔几乎不谈数据统计的技术细节。比如说,ZestFinance是如何处理数据缺失以及数据错误的呢?我真的很好奇。
精准性与混杂性的辩证
一般来说,“不是....。.而是....。.”的语句,应该是指同一事物的不同状态。比如“不是晴天而是下雨”,或者“不是田埂而是小溪”。如果你来一句“不是晴天而是小溪”,就显得难以理解了。
就统计学角度来看,数据的精准性是一回事,数据的不同格式(混杂性)是另一回事。格式混杂的数据,通过处理或许是能够精准的。
格式混杂的对立面是数据格式的统一。格式统一的数据或许可能也是不精准的。比如说迈尔大叔所列举的葡萄园测量温度以及BP炼油厂的感应数据。
另一方面,就精准性而言,数据的精准与数据分析结果的精准也是两个不同的概念。比如说,“2+2约等于3.9”是数据分析结果的不精准,而葡萄园温度测量和BP炼油厂的无线感应器网络数据的例子,则是指数据不精准但是因为数据多而克服了少量数据不精准的缺陷而使数据分析结果比较精准。
数据格式的混杂与统一,数据的精准与数据分析结果的精准,迈尔大叔都胡子眉毛一把抓了。
怎么理解大数据时代是十分重要的。大数据时代的特征是“一切皆为数据”,那么数据来源的多样性以及数据格式的混杂性确实成为一个大数据时代显著的特征。但是,这个特征的对立面,可能更应该是数据来源以及数据格式的单一性。
数据的混杂性需要更成熟的分析手段来分析,分析的结果也可能不像我们传统的那样丁是丁卯是卯。但这些应该是数据分析师的工作,而不是我们这样的屌丝们所需掌握的本领。
或许,我们可能更应该从屌丝的角度来归纳大数据时代的特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27