
解读《大数据时代》:复杂世界的数据观_数据分析师
《大数据时代》给出的大数据时代的第二个特征,是“不是精准性,而是混杂性”。这是一个相当难以理解的分割方式。虽然看一个个的案例,读者似乎明白了,可是放下书,却又疑上心头:为什么大数据时代不要精准性?精准性与混杂性之间有必然的对立关系吗?
如果说第一个特征中的“随机样本”和“全体数据”(记得实际是数据库的概念)的概念我们还能够从迈尔大叔的叙述中得以澄清,这里的“精准性”和“混杂性”就要认真考证了。
何为精准性?
迈尔大叔有关精准性的论断,应该是对小数据时代数据匮乏的藐视:你们这帮屌丝,撅着屁股捡钢镚,俺们土豪100元从来都不要找零的!小数据时代数据少啊,每个数据都当个宝,斤斤计较数据的精度。
“执迷于精确性是信息缺乏时代和模拟时代的产物。在那个信息贫乏的时代,任意一个数据点的测量情况都对结果至关重要。所以,我们需要确保每个数据的精确性,才不会导致分析结果的偏差。”
我们来看看迈尔大叔提供的有关精准度的案列,后面讨论用得着。
1)量子力学的”测不准“原理;(测不准即不精准,可这和大数据时代哪是哪儿呀?)
2)桥梁压力检测数字增加1000倍,错误率也会增加;(怀疑“错误率”是“错误数”的表达错误。错误率是错误的比例吗?如果错误率随着数据数量的增加而增加,那大数据还会准确吗?或许我真的被大数据时代OUT了。)
3)语音识别呼叫中心投诉的错误;(终于能够理解一个案例了!)
4)葡萄园N个温度计测量温度;(这是通过统计增强精准度。)
5)Forrester认为“有时得到2加2约等于3.9的结果,也很不错了。”(没有背景资料,不敢妄加判断。不过总觉得心悬悬的,你是否担心生活在一个“2加2可以约等于3.9”的社会里呢?)
6)微软研究中心寻求改进Word程序中语法检查的方法;(这是利用大数据来改进分析的精准性!)
7)BP炼油厂无线感应器网络数据;(又是一个大数据降低统计误差的案例。)
8)Facebook上的“4000个赞”和Gmail“2小时”计时;(神一般的大数据及其不精准性说明。)
9)Hadoop与Visa的算法。(这是一个如何牺牲分析结果的精准性以缩短所需分析时间的案例。回到迈尔大叔有关大数据时代的第一个特征,即使有了全体数据,必要时也要牺牲部分数据而争取时间。)
到此,可能能够理解为什么读这一小节这么困难了:迈尔大叔想告诉我们精准性不重要,可是他举的例子,却实在是有点“暧昧”不清。他究竟是想说数据的精准性还是数据分析结果的精准性呢?
何为混杂性?
“不是精准性,而是混杂性”。与混杂性所对立的精准性,原来不是迈尔大叔在描述精准性时以“2+2可以约等于3.9”时告诉我们的那个数据分析结果的精准性,而是数据的精准性。
“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。”
我们看到,在谈到大数据时代的混杂性时,迈尔大叔基本上都在谈论数据的混杂性(而不是数据的不精准性)。我们来看看混杂性的案例:1)对IBM称呼的混杂;2)谷歌翻译语料库;3)MIT研究项目;4)Flicker图片标签;5)新的数据库设计;6)ZestFinance。
说实在话,有关大数据时代混杂性的问题,因为有了前面对精准性的描述,一下子还真是被迈尔大叔给蒙住了,反复读了数遍,才理解。原来迈尔大叔所说的混杂性,是指数据格式的不统一。上面6个案例中,除ZestFinance外,基本上是讲数据格式的不统一或者数据来源纷杂。这的确是我们这个时代数据的特征。恭喜迈尔大叔终于说对了!
而ZestFinance则是指在数据不完整或者数据有错误的情况下如何处理数据的问题,这和大数据似乎没有太大的关系,与数据的混杂性也没关系。不过我们在此回忆一下,似乎除了随机样本问题外,迈尔大叔几乎不谈数据统计的技术细节。比如说,ZestFinance是如何处理数据缺失以及数据错误的呢?我真的很好奇。
精准性与混杂性的辩证
一般来说,“不是....。.而是....。.”的语句,应该是指同一事物的不同状态。比如“不是晴天而是下雨”,或者“不是田埂而是小溪”。如果你来一句“不是晴天而是小溪”,就显得难以理解了。
就统计学角度来看,数据的精准性是一回事,数据的不同格式(混杂性)是另一回事。格式混杂的数据,通过处理或许是能够精准的。
格式混杂的对立面是数据格式的统一。格式统一的数据或许可能也是不精准的。比如说迈尔大叔所列举的葡萄园测量温度以及BP炼油厂的感应数据。
另一方面,就精准性而言,数据的精准与数据分析结果的精准也是两个不同的概念。比如说,“2+2约等于3.9”是数据分析结果的不精准,而葡萄园温度测量和BP炼油厂的无线感应器网络数据的例子,则是指数据不精准但是因为数据多而克服了少量数据不精准的缺陷而使数据分析结果比较精准。
数据格式的混杂与统一,数据的精准与数据分析结果的精准,迈尔大叔都胡子眉毛一把抓了。
怎么理解大数据时代是十分重要的。大数据时代的特征是“一切皆为数据”,那么数据来源的多样性以及数据格式的混杂性确实成为一个大数据时代显著的特征。但是,这个特征的对立面,可能更应该是数据来源以及数据格式的单一性。
数据的混杂性需要更成熟的分析手段来分析,分析的结果也可能不像我们传统的那样丁是丁卯是卯。但这些应该是数据分析师的工作,而不是我们这样的屌丝们所需掌握的本领。
或许,我们可能更应该从屌丝的角度来归纳大数据时代的特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27