
大数据时代的传统经济转型_数据分析师培训
除了国家层面的新技术战略抉择,2014,我们需要有更新的视野来看待大数据,需要有更务实的方法来解决传统经济在操作层面上的升级转型,利用大数据改变现有传统生产模式下的中国企业,使传统经济参与新一轮产业变革,进而带动中国经济的新一轮增长。
传统经济也可以是高科技的
近几十年来的信息技术变革,其本质是信息化,从技术效果上看是一个生产“数据”的过程,十多年前还被零零碎碎手书的数据,已被各种新工具不断采集和存储,各行各业或多或少都拥有着自己的数据资源。从自身累积的历史数据中使用合适的分析方法,找到原本凭借行业内职业经验与直觉找不到的“规律”,解决自身实际问题,这就是数据创新。有时,这种创新带来的改变是“琐碎”的,但却优化了商业模式、提升了用户体验,甚至完善了企业经营模式与文化。
这里特别需要指出的是,不放过任何盈利机会的零售业,早已是数据创新的主战场。当前,商业流通结算行业的定价、销售和支付正在发生变革。大数据驱动下的商品定价变革将是根本性的,是原有商品定价模式的一种逆反,非商家定价,而是由消费者定价。在销售模式上,电子商务能否成为一种真正的销售变革,这完全取决于C2B模式。未来商业流通领域的价值链原动力是消费者驱动,而非现有的制造驱动或设计驱动,大致有两种:一是聚合需求形式,如反向团购;二是要约合作形式,如逆向拍卖等。从技术层面上说,都是基于交易数据创新的,需要更快捷地划分、分析和锁定消费者,转而将这些小众的微量需求来改进商品、促成销售,将已有的定制开发逐渐从“大规模”转成“个性化、多品种、小批量和快速反应”。在支付形式上,一种是将管理支付转为管理数据;另一种是将支付货币转为支付信用。
大数据时代,传统经济想要有高科技含量,最关键的是不要做数据的“看守人”。目前被打车软件“搅翻”的出租车行业,同样能利用数据创新改变现状,这是因为:出租车行业拥有的数据大多是轨迹线交通数据,这是一种能直接或间接反映驾驶者的主观意愿和车辆行驶过程中的环境限制等情况的数据,具有运行时间长、在城市整体交通流量中占有量大的特点。分析和挖掘出租车这种城市典型移动对象的历史轨迹数据中,找到本地区驾驶员偏好、乘客出行习惯或交通拥堵热点,有助于直接了解人们的各种社会活动、间接把握城市动态性。因而,依据轨迹线交通数据创新能改变当前导航市场的“红海”格局,使用实时交通路线推荐替代基于地图数据的最短路径推荐。
两种业态是一种竞合关系
什么是数据产业?从信息化过程中累积的数据资源中提取有用信息,即数据创新,将这些数据创新赋予商业模式,就是产业化,因而数据产业是信息产业的逆反、衍生与升级。应当看到,这种由大数据创新所驱动的产业化过程,是具有“提升其他产业利润”特征的,除了能探索新的价值发现、创造与获取方式以谋求本身发展外,还能帮助传统产业突破瓶颈、升级转型,是一种竞合关系,而非一般观点“新兴科技催生的经济业态与原有经济业态存在竞争关系”。
所以,数据产业培育围绕传统经济升级转型,依附传统行业企业共生发展,实为上策。需要指出的是,为加速数据产业企业集聚形成产业集群、凸显极化效应,设计数据产业发展模式同样应考虑建立数据产业基地,但不能照搬传统的“政府引导、市场选择和企业主导”方式,而应是某种“新型”样式,至少具有以下五方面特征:
一是产业显现凝聚力,围绕某一领域或行业数据资源,实现资源、科技共享,数据产品生产专业分工明确,基地内企业做到竞合协同,具有整体创新绩效。二是资本、科技双重驱使,由专业数据产业基金引导政府相关部门、多个大学与科研院所参与基地建设。三是“智慧”精准管理,在管理上将依靠数据创新实现精准化,充分体现“智慧”。四是多元化生态型,其实质是一种内嵌数据创新核心应用的城市CBD,具有充足的商业配套、齐备的文化设施和宜居的生态社区,能进行便利的商业活动、生产工作和生活娱乐。五是人才高地,能将各种人才结合在一起,调动其积极性、创造性。
数据产业的竞争关乎国力
数据产业竞争涵盖了政治、经济、军事、文化等多个领域,从宏观到微观,从虚拟到实体,涉及航空、航天、海洋、电力、教育等生活的方方面面。
根据对数据产业内涵和外延的不同理解,其概念有广义和狭义之分。
从狭义上来说,数据产业从技术效果上看主要是数据准备、数据挖掘和可视化,即对数据资源进行合理开发、对数据资产进行有效管理,直接商品化数据产品,涵盖数字出版与文化业、电子图书馆和情报业、多媒体业、数字内容业、领域数据资源开发业、行业数据资源服务业等,当前已有的数据创新有网络创作、数据营销、推送服务、商品比价和疾病预控等。从广义上来说,数据产业包括涉及狭义意义上的上下游关联行业,依次具体是:数据采集、数据存储、数据管理、数据处理、数据挖掘、数据分析、数据展示,以及数据产品评价和交易。
同时,数据产业的竞争除了考虑企业的,还应考虑国家的。未来国与国之间的竞争将“部分体现为一国拥有数据的规模、活性以及解释、运用数据的能力,即国家数字主权,这将是继边防、海防、空防之后,另一个大国博弈的空间”。在未来,军事对垒可能不再硝烟纷飞,而是仅凭虚拟推演决定真实胜负。因而,为实现中华民族伟大复兴,应重视数据推演。另外,诸如消防、警察等公共管理部门也需要大数据依托。特别需要指出的是,无人机也是大数据。
归根结底,未来国与国之间的竞争就是数据产业的竞争。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23