京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”分析意义很大_数据分析师培训
近日,中国青年报社会调查中心对2315人进行的一项调查显示,43.6%的受访者认为“大数据分析“意义很大,但80%的受访者也确认自己不清楚什么是“大数据”,75.9%的受访者发现目前存在“大数据”被滥用的现象。
80%受访者
不清楚什么是“大数据”
调查中,听说过和没听说过“大数据”的受访者各占一半。80%的受访者直言不清楚什么是“大数据”,表示“非常清楚”和“比较清楚”的受访者分别仅占8.3%和11.6%。其中,75.9%的受访者发现“大数据”存在被滥用的现象。
北京大学信息工程学院计算机应用技术专业研一学生卿某,这学期正在学习一门关于调研“大数据”的课程。谈及如今的“大数据”热,卿某显得有些激动。他说,“大数据”可以帮助人们了解平时注意不到的信息,还可以预测未来,比如可以根据机票涨降情况确定最佳购票时机,根据人们的搜索记录更早地预测流感传播。
卿某表示,如今很多企业都在说“大数据”,其中不乏“跟风”现象。有些数据分析贴上“大数据”标签,瞬间就显得“高大上”,其实并没有真正的“大数据”分析。
统计学专业毕业的王京也认为,现在有些标榜“大数据”的报告,一方面数据量不大,另一方面也不是“大数据”的思维。“大数据”讲究效率、针对个人,但很多类似于“大数据教你谈恋爱”这样的说法,更多是一种噱头。
电子科技大学互联网科学中心主任、《大数据时代》中文翻译者周涛说,的确有一些企业在商务智能时代没有学好商务智能,到了大数据时代才刚刚学会商务智能,就说自己是“大数据”。
周涛认为,一个企业有没有“大数据”能力,一个分析报告是否包含“大数据”成分,要看是否具备两个特征:一是数据本身要具有一定规模,肯定不同于以前社会科学控制实验中几十几百人的规模;二是数据分析结果要能够提供深刻洞见,不是简单的统计分析,譬如“某社交网络1000万用户中45%是男性”、“全国春运最热航线是北京到上海”,这些都不是“大数据”,只是非常简单的分析方法在稍微大一点的数据集上的应用。
35.6%的受访者觉得一些“大数据”分析空有大量数据
南京大学计算机专业博士高坤(化名)说,现在“大数据”还存在很多问题,比如数据的所有权问题、隐私问题、安全问题等,都需要尽快解决。
周涛认为,很多人分不清安全和隐私。安全问题一直都有,主要是指攻击方通过一些手段盗取信息或破坏信息。使用数据的企业,在接触敏感甚至涉密信息时,应该有安全资质的认证。这在我国的运营商体系和金融体系里都有明确要求。
“经常和安全问题混为一谈的,是数据隐私的问题。”周涛说,一方面,隐私数据直接泄露,或者有不法人士售卖这些信息,另一方面,一些隐私信息通过技术手段遭到破译。这样就可能给个人或商家带来伤害,比如一些招聘网站的个人求职信息被破译之后,会对个人造成伤害,也会让招聘企业无法阻断信息,失去盈利空间。
“除去法律层面、道德层面,科学技术层面上也还有很多问题需要解决。”高坤说,有这么多数据,具体怎么处理,还需要更好地研究。现在很多“大数据”只是存储下来,缺少进一步分析,但是把海量数据存储下来本身也是技术进步,是“大数据”工作的一部分。
调查中,35.6%的受访者觉得现在一些“大数据”分析空有大量数据,30.8%的受访者认为缺乏数据安全,11.1%的受访者提出缺乏科学性,9.3%的受访者指出分散数据没有有效整合,7.8%的受访者认为存在“大数据”与传统分析概念混淆的情况。
43.6%的受访者认为“大数据”分析意义很大
调查显示,43.6%的受访者认为“大数据”分析的意义很大,7.0%的受访者认为不太大,9.5%的受访者觉得“大数据”分析没什么意义,39.8%的受访者表示不好说。
90后北大研究生刘环是在一次讲座上了解到了“大数据”。刘环认为,“大数据”确实还存在很多问题,但不可否认生活、学习中的很多细节也因“大数据”而改变,比如现在用的翻译工具越来越智能化,一些输入法更人性化,这些都归功于“大数据”分析,相信“大数据”会有更大发展空间。
周涛表示,“大数据”分析的意义主要体现在:一、挖掘数据中潜藏的关联关系甚至因果关系;二、对数据整体中缺失的信息进行预测;三、对数据所代表的系统走势进行预测;四、支持对数据所在系统功能的优化,或者对决策起到评估和支撑作用。
高坤认为,“大数据”本身是一种新的科学手段,虽然目前还不成熟,但已经开始受到科学家的关注。“大数据”对于经济、国防,都是最重要的科技手段。青年应该更多地关注科学技术的发展,从科技的角度来理解“大数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07