
“大数据”分析意义很大_数据分析师培训
近日,中国青年报社会调查中心对2315人进行的一项调查显示,43.6%的受访者认为“大数据分析“意义很大,但80%的受访者也确认自己不清楚什么是“大数据”,75.9%的受访者发现目前存在“大数据”被滥用的现象。
80%受访者
不清楚什么是“大数据”
调查中,听说过和没听说过“大数据”的受访者各占一半。80%的受访者直言不清楚什么是“大数据”,表示“非常清楚”和“比较清楚”的受访者分别仅占8.3%和11.6%。其中,75.9%的受访者发现“大数据”存在被滥用的现象。
北京大学信息工程学院计算机应用技术专业研一学生卿某,这学期正在学习一门关于调研“大数据”的课程。谈及如今的“大数据”热,卿某显得有些激动。他说,“大数据”可以帮助人们了解平时注意不到的信息,还可以预测未来,比如可以根据机票涨降情况确定最佳购票时机,根据人们的搜索记录更早地预测流感传播。
卿某表示,如今很多企业都在说“大数据”,其中不乏“跟风”现象。有些数据分析贴上“大数据”标签,瞬间就显得“高大上”,其实并没有真正的“大数据”分析。
统计学专业毕业的王京也认为,现在有些标榜“大数据”的报告,一方面数据量不大,另一方面也不是“大数据”的思维。“大数据”讲究效率、针对个人,但很多类似于“大数据教你谈恋爱”这样的说法,更多是一种噱头。
电子科技大学互联网科学中心主任、《大数据时代》中文翻译者周涛说,的确有一些企业在商务智能时代没有学好商务智能,到了大数据时代才刚刚学会商务智能,就说自己是“大数据”。
周涛认为,一个企业有没有“大数据”能力,一个分析报告是否包含“大数据”成分,要看是否具备两个特征:一是数据本身要具有一定规模,肯定不同于以前社会科学控制实验中几十几百人的规模;二是数据分析结果要能够提供深刻洞见,不是简单的统计分析,譬如“某社交网络1000万用户中45%是男性”、“全国春运最热航线是北京到上海”,这些都不是“大数据”,只是非常简单的分析方法在稍微大一点的数据集上的应用。
35.6%的受访者觉得一些“大数据”分析空有大量数据
南京大学计算机专业博士高坤(化名)说,现在“大数据”还存在很多问题,比如数据的所有权问题、隐私问题、安全问题等,都需要尽快解决。
周涛认为,很多人分不清安全和隐私。安全问题一直都有,主要是指攻击方通过一些手段盗取信息或破坏信息。使用数据的企业,在接触敏感甚至涉密信息时,应该有安全资质的认证。这在我国的运营商体系和金融体系里都有明确要求。
“经常和安全问题混为一谈的,是数据隐私的问题。”周涛说,一方面,隐私数据直接泄露,或者有不法人士售卖这些信息,另一方面,一些隐私信息通过技术手段遭到破译。这样就可能给个人或商家带来伤害,比如一些招聘网站的个人求职信息被破译之后,会对个人造成伤害,也会让招聘企业无法阻断信息,失去盈利空间。
“除去法律层面、道德层面,科学技术层面上也还有很多问题需要解决。”高坤说,有这么多数据,具体怎么处理,还需要更好地研究。现在很多“大数据”只是存储下来,缺少进一步分析,但是把海量数据存储下来本身也是技术进步,是“大数据”工作的一部分。
调查中,35.6%的受访者觉得现在一些“大数据”分析空有大量数据,30.8%的受访者认为缺乏数据安全,11.1%的受访者提出缺乏科学性,9.3%的受访者指出分散数据没有有效整合,7.8%的受访者认为存在“大数据”与传统分析概念混淆的情况。
43.6%的受访者认为“大数据”分析意义很大
调查显示,43.6%的受访者认为“大数据”分析的意义很大,7.0%的受访者认为不太大,9.5%的受访者觉得“大数据”分析没什么意义,39.8%的受访者表示不好说。
90后北大研究生刘环是在一次讲座上了解到了“大数据”。刘环认为,“大数据”确实还存在很多问题,但不可否认生活、学习中的很多细节也因“大数据”而改变,比如现在用的翻译工具越来越智能化,一些输入法更人性化,这些都归功于“大数据”分析,相信“大数据”会有更大发展空间。
周涛表示,“大数据”分析的意义主要体现在:一、挖掘数据中潜藏的关联关系甚至因果关系;二、对数据整体中缺失的信息进行预测;三、对数据所代表的系统走势进行预测;四、支持对数据所在系统功能的优化,或者对决策起到评估和支撑作用。
高坤认为,“大数据”本身是一种新的科学手段,虽然目前还不成熟,但已经开始受到科学家的关注。“大数据”对于经济、国防,都是最重要的科技手段。青年应该更多地关注科学技术的发展,从科技的角度来理解“大数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23