京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为何难走进人力资源管理_数据分析师
近一两年,大数据成为人力资源管理领域的热词。但不得不说, HR可能误会大数据了。
大数据是什么?简单来说,大数据就是大量的数据,其具有4V的特点:Volume(大量)、Velocity(高速产生)、Variety(多样性)、veracity(真实性)。
涂子沛在《大数据》一书中有个定义,即指一般软件工具难以捕捉、管理和分析的大容量数据,数据量大到以“太字节(TB)”为单位。1TB=1024GB。一个万人的企业,即使把胜任力、绩效、岗位等传统数据完全纳入,顶多只能用“吉字节(GB)”为单位,离“太字节”的体量还相差甚远。
而且,HR采集数据的传统思路是“先有思考框架,再收集相应数据”。这种思路采集的人力资源数据具有典型的“非大数据特征”。
其一,这些传统数据是“冷备份”而非“热备份”。冷备份即生成之后再调用,热备份则是数据随着工作流无意识产生,只要员工开展工作,自然有数据往“云平台”上跑,而且这些数据也能被“云平台”计算。
其二,这些数据是“报表数据”而非“源数据”。报表数据是经过处理后的数据,例如某餐饮企业,员工某天接待顾客的数量。而源数据则是指未经过处理的数据,是对于工作流全面的呈现,如员工在某个时点接待了一个多大年龄的顾客、客单价多少、接待时长多少、提供服务次数……这些才是源数据,但也很难采集。
其三,这些数据是“样本”而非“全貌”。由于是在某个时点上针对某些领域提取数据,数据仅仅是样本,而非全貌。
明白了大数据的思路后,大数据和人力资源管理结合的难度不言而明。
而且,困难还不仅来自于硬件的制约,硬件其实好解决,更多的障碍来自管理基础和管理观念等非技术性的因素。
比如,如何克服部门博弈问题?业务部门将生产数据导入人力资源管理信息系统,对于提高人力资源管理效率无疑是好事,但对于部门来说,却意味着权力空间被挤占。以前部门争取机构、编制、人员都可以保留一定的空间可以和HR谈判,导入大数据之后,他们几乎变成透明的,显然是弊大于利。
还有,如何让领导转换思路?当前在国内企业,重视数据的老板或领导并不多,因为他们过去的成功并不是依靠数据,企业就天然缺乏数据基因。别说大数据了,就是实行数据化的管理也需要老板来做顶层设计啊,所以首先需要老板转换思路,但这该有多难?!
不禁要说那句俗话:大数据人力资源管理,前景的确很光明,但道路却漫长而艰难!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07