京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当大数据遇见教育_数据分析师
维克托·迈尔-舍恩伯格,牛津大学互联网研究所教授,大数据领域公认的权威,继引发广泛热议的《大数据时代》之后,最近舍恩伯格和《经济学人》数据编辑肯尼斯·库克耶联袂推出《与大数据同行:学习和教育的未来》一书,探讨大数据研究在教育领域的应用。
开篇,两位作者讲述了具有比较性的两个实例:唐卡画家的培养遵循传统,师父的任务就是确保年轻人严格遵守规则;斯坦福大学计算机科学家吴恩达收集所有关于学生举动的信息,从中提取最有效的内容并将其纳入系统设计,最后挖掘出大数据对于教育的非凡效果。对比清楚地传达出一个信息:传统教育囿于各种条件很难真正做到提倡因材施教,而借助大数据将会实现更有效的转变。
许多实例和生动的故事,帮你了解大数据对个性化教育所起的惊人作用。小数据时代,人们只能评价那些简单的元素,如测验成绩等。结果是,反馈几乎呈单向度,从教师和校方指向学生和家长。大数据正在改变这一状况。如,同样一门课程,若假借大数据应用的推送,给不同要求的学科以差别化的内容推荐,有针对性地给出对应的学习策略。人类以往的知识体系和知识点在大数据背景下不会发生变化,但学生们却可以通过大数据应用得到个性化指导和无穷无尽的资源配置。
个性化学习给人印象最深刻的特征就是其动态性,学习内容可以随着数据的收集、分析和反馈改变与调整,这对奔走于补习班中的中国学生是福音,因为大数据给你提供了个性化意见。
大数据可以帮助我们突破智力上的局限。两位作者明确指出,大数据最大的作用就是,它不需要对所有事情的原因做出准确解释。也就是说,只要知道“是什么”,而不需要知道“为什么”。作者的这种观点在认知论上颠覆了我们传统的思维习惯,给予我们更全面、更精细的视角看待世界的复杂性和身处其中的位置。
作者的洞见还在于,他们在看到大数据对教育带来良性改变的同时,前瞻性地发布了大数据教育的种种预警。作者指出,最大隐患是“无法遗忘的旧数据”。或许,某次考试作弊被抓的记录将束缚你的人生,否定你在此之后的进步、成长和改变的种种努力,想想这真令人沮丧,不是吗?大数据预测可以为我们提供比较平坦舒适的教育轨迹。但实际上,这可能正是问题所在,也许我们应该受到鼓励并迎难而上,而不是满足于便捷的前进路线。大数据会否造就另一种形式化的“庸才教育”呢?难道我们的所有信息都处于监控之中,然后把希望寄托在类似美剧《疑犯追踪》的主角那样的管理者理想人格之上吗?
爱因斯坦说过:“想象力比知识更重要,因为知识是有限的,而想象力概括世界的一切。”对于大数据来说,它可以提供更高效的技术分析,但是,由人类的智慧、独创性、创造力造就的理念,还有人类甘愿在困境中努力突围的信念,这是大数据分析无法做到的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07