京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R处理大数据集_数据分析师
用R处理大数据集
JAN 1ST, 2012
| COMMENTS
本文翻译自R in Action
的附录G,如果对该书感兴趣,请自行购买或去图书馆阅读。
R会把所有的对象读存入虚拟内存中。对我们大多数用户来说,这种设计可以提高与R相互的速度,但是当分析大数据集时,这种设计会降低程序运行速度有时还会产生跟内存相关的错误。
内存限制主要取决于R的build版(32位还是64位),而在32位的windows下,取决于操作系统的版本。以cannot allocate vectoe of size开头的出错信息表示无法分配充足的连续内存,而以cannot allocate vector of length开头的出错信息表示超越了地址限制(address limit)。在处理大数据集时,应尽量使用64位版的R。对于各种build版,向量中的元素个数最大为2147483647(请自行?Memory)。
在处理大数据集时有三方面应该考虑:(a)提高程序的效率,保证执行速度;(b)把数据储存在外部,以解决内存限制问题;(c)使用专门的统计方法来有效处理大数据量的问题。
下面将分别讨论。
下面几条编程技巧来可以提高处理大数据集时的效率
函数族把外部数据导入数据框时,尽量显式设定colClasses和nrows选项,设定comment.char = "",把不需要的列设置成NULL。这样可以减少占用的内存,同时加快处理速度。将外部数据导入矩阵时,使用scan()函数;
可以删除内存中的所有对象。删除指定的对象可以用rm(object);
,被墙)中提到,使用函数.ls.objects()列出工作区内的对象占用的内存大小。这个函数会帮助你找到吃内存的大家伙。
和summaryRprof()函数完成这项工作。system.time()函数也可以帮助你。profr 和 prooftools 包提供了若干函数来帮助分析profile的输出。
处理大数据集,提高代码效率只能解决一部分问题。你也可以把数据存在外部存储并使用专门的统计分析方法。
有几种包可以实现在内存之外存储数据。解决之道是把数据保存在外部数据库或者硬盘里的二进制文件中,然后在需要的时候部分地读取。下表描述了几种有用的包:
包
描述
ff
提供了一种数据结构,保存在硬盘中,但是操作起来就如同在内存中一样
bigmemory
支持大规模矩阵的创建、储存、读取和操作。矩阵被分配到共享内存或内存映射的文件中(memory-mapped files)
filehash
实现了简单的key-value数据库,在其中特征字符串key与存储在硬盘中的数据value相关联。
ncdf, ncdf4
Provides an interface to Unidata netCDF data files.
RODBC, RMySQL,ROracle, RPostgreSQL,RSQLite
可以用这些包读取外部关系数据库管理系统的数据
上面的包可以帮助克服R的内存限制。除此以外,当需要在有限时间内分析大数据集时,使用专门方法也是必须的。一些有用的方法将在下面介绍。
R提供了几种分析大数据集的包:
和 speedglm 包可以针对大数据集有效地拟合线性和广义线性模型。在处理大规模数据集时,这两个包提供了类似lm()和glm()的功能。
包可产生大规模矩阵,一些包可以提供分析这些大规模矩阵的函数。bigannalytics 包提供了k-means聚类、行统计量(column statistics)和一个对biglm()的封装。bigtabulate 包提供了table()、split()和tapply()的功能,bigalgebra 包提供了高等线性代数的函数。
包提供了最小角回归(least-angle regression)、lasso以及针对大数据集的逐步回归,数据集因太大而不能读入到内存中,这时候要配合 ff 包使用。
包可以用来处理大数字(大于2^1024)
处理从GB到TB级的数据对于任何数据都是极大的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02