
大数据与上海转型发展_数据分析师
大数据已经成为当前媒体上最热门的信息技术词汇之一。
然而,对于何谓“大数据”,目前尚无一个统一的定义。如果将大数据比喻成一棵树,麦肯锡强调数据集,像是大数据深入地下的根;著名研究机构高德纳(Gartner)强调资产和增值,恰如大数据树上绽放的鲜艳花朵;牛津大学数据科学家、畅销书作家迈尔-舍恩伯格强调分析方法,可以应用于不同的情境,相当于大数据的枝干。
对于上海而言,大数据具有无限的魅力:它挺立于IT产业的高端,吸引着产业和资本的无数眼球;它枝藤蔓延,广泛应用于各行业的应用和创新,不经意间就掀起一场行业变革的风暴——对于正处在转型发展中的上海来说,它的到来适逢其时。
大数据和决策制定
上海是海量数据的信息枢纽,大数据对于上海要重点发展的先进制造业和现代服务业以及传统服务业与信息化的深度融合的先行先试,率先迈向智慧城市这一目标,与国内其他城市相比有着迥然不同的重大意义。
作为一项通用技术,大数据所影响的不是某个特定行业,而会波及所有行业。但在初期,对不同行业的影响存在差异。那些率先迈入数据密集型、基于知识创新、个性化要求高的行业,如金融、保险、医疗、零售、电信等有机会先行一步。
在后工业社会中,大数据并非孤军挺进,智能技术支持决策制定需要有相应的经济和社会环境支持,包括服务经济占主导(尤其信息服务业)、专业技术阶层的优越地位和理论知识的首要位置(反映在研发投入上)。
从上海这几方面的发展看,2011年第三产业占比达到60%,信息产业增加值(制造加服务)占GDP比重达9.9%;国有企事业单位专业技术人员占比为61.3%;全年用于研究与试验发展(R&D)经费支出占GDP比重达到3.16%。这些指标数据与全球同类城市如新加坡、香港等相比并不落后,为大数据的推广和应用奠定了基础。
借助于大数据辅助决策是后工业社会的典型特征,也是其基本要求。
作为特大型的国际都市,上海一直强调以创新驱动来解决诸多城市发展中面临的问题。但是创新驱动是个复杂的系统工程,需要借助科学理性的决策。而决策必须基于上海的现实,如市场竞争格局、辐射力,市民消费习惯、收入水平,人口统计、地理空间等,这些数据的总和构成上海发展可资利用的大数据。没有一个科学的、系统的数据分析方法,很多决策质量将很难真正上水平,而且可能蕴藏着巨大的误判风险。
大数据和IT产业升级
上海要走在全国的最前列,就必须抓住大数据发展的机遇,把握住大数据这一IT产业的关键。
从近年来国际大型IT企业的频频收购活动也可以察觉出大数据是IT产业的关键这一动向。
IBM在将一些硬件业务出售给像联想这样的公司的同时,也加大了对软件公司收购的力度,包括著名的智能软件Cognos和分析软件公司SPSS等。
谷歌收购了Measure Map统计分析程序、 深度搜索应用公司Tranformic、网站流量分析和统计公司Urchin等,都跟大数据直接相关。亚马逊、Facebook等公司也都在富有远见地布局大数据产业。
抓住大数据发展的机遇,上海不仅仅需要相应的智能化技术,还需要对行业或城市管理有深入的理解,它构成了整个IT产业链中知识最为密集的环节,占据着行业的高端。
在IT产业中,基于大数据的商业机会主要掌握在两类公司手中:一类是IBM、微软、惠普等公司提供“硬件+软件+数据”的整体解决方案,以平台性为特征,提供基础服务;另一类是以Facebook、亚马逊和谷歌等公司为代表,基于海量的用户信息,提供精准营销和个性化广告推介等活动。此外,新兴的创业公司通过出售数据和服务有针对性地提供单个解决方案,在特定行业和区域复制前两类公司的大数据服务模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19