
浅析大数据在消费维权中的作用_数据分析师培训
大数据时代,数据思维和应用对政府行使职能产生了深刻的影响。全国工商系统12315网络作为与广大消费者开展信息互动的权威平台,实时采集大量的投诉咨询和举报数据。这些数据是整个社会消费活动的数字化记录,是可以重复利用的特殊非物质财富,也是维护消费者权益和市场经济秩序的决策依据。对这些数据资源进行深度分析利用,能够客观、真实、迅速地找出消费维权领域的各种问题及其成因。
一、发挥大数据挖掘分析作用,确定消费维权工作重点
(一)构建大数据利用平台,建立智能决策支持系统
作为消费维权的大数据“仓库”,全国工商系统12315网络具有数据种类丰富(包含消费者和被诉方的名称、地址等各种信息)、查询便捷、功能多样等特点。可以按照需要对事发区域、被诉主体、消费事由等参数进行筛选,通过数据比对、分析和归纳,及时、准确地反映消费热点的分布、变化和涉嫌违法行为的高发区域,帮助职能部门客观分析消费现状,同时还能验证国家经济、产业政策的实施效果,为政策制定提供参照标准,辅助宏观决策和调控。
(二)分析投诉举报数据模型,确定消费维权重点
通过对消费维权数据的整理、分类,建立包括12315事项办理效率分析(受理量、办结率、催办率、立案率、销案率)、质量分析(抽查率、错单率、二次投诉举报率、信息自录率)、维权联络站工作分析(受理量、处理量、办结率、转办率、自行和解率、挽回经济损失额)、群众满意度分析等方面的综合评价体系并加以量化。采取图表、文字等可视化的表现形式,呈现某一领域消费维权的重点和热点及其变化发展趋势。
(三)开展消费经济研究,提供市场经济决策依据
结合12315网络和全国法人信息库等大数据资源,着力加强消费维权领域的综合分析和研判,为开展消费经济研究提供数据支撑。以上海为例,上海市工商局近年来积极开展消费维权数据与国民生产总值、社会消费品零售额、经济产业结构及区域分布之间的关联度分析。通过大数据分析发现并总结了“三同”——维权总量与GDP总量同速增长,维权结构与产业结构同幅变动,维权区域与城乡发展同向推移;“三转”——维权重心由线下消费转向网上消费,维权品类由实物消费转向信息消费,维权模态由生存消费转向精神消费。相关分析报告得到了市领导的肯定,并为该市制定相关经济和产业政策提供了重要的决策依据。
二、立足大数据预测警示作用,促进消费维权工作关口前移
通过对投诉咨询和举报数据进行实时分析、关联分析和趋势规律性分析,能够帮助职能部门事前主动发现消费规律和消费争议的潜在风险,并适时采取有针对性的预防措施,避免潜在的消费问题凸显,从而促进消费维权工作关口前移,节省行政资源。上海市工商局奉贤分局近年来利用消费维权类型建模,在大数据分析的基础上得出每年12月至次年1月是预付费式消费争议投诉的集中多发期。2015年年初,该分局提前在《东方城乡报》等媒体发布预付费式消费警示,曝光金仕堡健身馆涉嫌违规预售会员卡等典型案例,发挥了积极作用。
三、搭建部门合作、社会共享的大数据利用框架,促进“大消保”维权体系的形成
(一)加强横向联系,凝聚部门维权合力
新《消法》规定,消费维权是全社会的共同责任,而涉及消费维权工作的部门包括消协、工商、公安、食药监、质检和物价等多个部门。随着消费方式的日趋多样和经营业态日益丰富,跨部门管辖的投诉举报日益增多。传统的、线性的、自上而下的以职能部门为主导的维权模式已难以满足消费者的需求。而以数据为载体的消费维权信息成为一种标准化语言,具有在区域之间、行业之间和部门之间的穿透性。通过建立多元的数据收集通道,使消费维权数据在相关职能部门之间无障碍流动,实现数据共享与数据处理同步,使维权信息从工商系统“体内循环”转向“体外辐射”,促进形成部门资源共享、社会责任共担的维权格局。
(二)衔接信用公示系统,增强社会维权力量
如果将12315消费维权信息网络比作工商部门采集消费和经济行为数据的“入口”,那么信用公示系统就是向社会反馈侵害消费者权益行为等信息处理结果的“出口”。在保护国家安全、商业秘密、个人隐私等基础上,通过政府网站、移动接口等将非涉密的消费维权大数据信息通过信用公示系统向社会免费公布,有利于市场主体自律和消费者维权意识的觉醒,最终实现消费维权由政府主导转变为市场自律,增强社会维权力量。
当然,要确保大数据在消费维权领域充分发挥实效,还需要树立大数据思维理念。一是加强数据源头管理,规范12315数据采集,解决遗漏、不完整、关联性和逻辑性不强等问题。实践证明,基础数据如果不准确,就会导致数据统计分析出现偏差,从而误导领导决策和行政执法。二是强化12315数据的综合分析,切实提高数据分析质量和水平,突出分析结果的实用性。三是加强12315数据分析成果运用,实行诉转案无缝衔接。要运用数据分析技术手段,梳理和排查12315数据中的违法行为线索,确定监管执法重点,使大数据真正成为保护消费者合法权益、打击违法行为的新兴力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09