京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师-数据分析师为何有专业要求
数据分析师对专业要求一般为:统计学,经济学,计量经济学,人口学,社会学,心理学,市场营销,企业管理。
在这些专业中,最主要的是有一个共性——统计。因此,对于统计概率掌握得比较好的都可以从事数据分析的工作。由于国内数据分析行业发展还不够成熟,统计学出身的学生其实真正工作中做数据分析的非常少,因为企业的需求是最近几年才上升的,所以对于很多非统计专业的人来说,其实也可以进入到这样一个行业。
目前国内数据分析行业正快速发展,
人大经济论坛CDA数据分析师作为国内领先的数据分析探索者,总结了目前大多数企业的岗位要求。要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、统计概率基础;
2、商业数据敏感度;
3、基本工具(EXCEL、SAS、SPSS、SQL等);
4、数据分析建模,编程能力;
5、经验;
统计其实是属于数据分析的一部分,数据分析包括统计分析和数据挖掘。所以统计是必须要掌握的一部分,一般对于一名数据分析师必须要掌握的知识点是“描述性分析”,“假设检验”,“参数估计”,“统计制图”,“回归分析”。企业工作中,可以根据不同的要求掌握相应的知识。
商业数据敏感度是作为一名数据分析师的前提,对数据排斥的人当然不适合从事这个行业。
基本工具是载体,唯有驾驭工具,才能驾驭数据分析。
经验是非必要技能,数据分析是为业务服务的,最终落地要解决业务问题。
根据人大经济论坛CDA数据分析师的介绍,可以总结如下:
一、自身检查:是否适合数据分析岗位。
什么样的人适合做数据分析师?
1. 对数据敏感:对数字不恐惧,经常关注行业数据动态,能够从数据变化中自行感觉出实务背后的原因规律。
2. 耐得住性子和寂寞:耐心,就不用多说了。寂寞,与数据打交道需要你爱上数据而不是排斥数据。
3. 自学能力强:在数据分析的过程中需要经常自行研究学习一些新的思路和方法,不断修正,不断更新。
二、 从入门到精通系统学习
1. 统计概率基础:数据分析行业分析,数据挖掘经典流程,数据的描述性分析,数据的推断性分析,方差分析,回归分析,多元统计等系列理论课程,唯有掌握原理,方能驾驭工具。
2. 数据分析工具学习:根据等级的要求,一般软件在学术界和企业界的应用广泛程度为,学术界 :STATA >R > Matlab> SPSS >SAS ; 商业界:SPSS>R>SAS > MATLAB 。上手难度:SAS>R>MATLAB>STATA>SPSS>EXCEL工具的选择不在于多,而在于跟具体问题相结合,在学习的过程中可以选择1-2门的工具进行熟练使用。参考各大数据分析工具的区别。
3. 数据分析建模:利用工具进行数据分析模型、数据挖掘算法建模运用,常用的数据分析方法有(回归分析法、主成分分析法、典型相关分析、因子分析法、判别分析法、聚类分析法、结构方程、Logistic模型等),常用的数据挖掘算法有(时间序列、Panel Data、关联法则、神经网络、决策树、遗传算法)以及可视化技术。
4. 以上三部分皆为数据分析硬性技术,要想熟能生巧需要经常在学习和工作中运用,不断改善,不断优化模型,将技术与具体业务结合起来,经过长时间的积累方能成为高级数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22