京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、简介
LevelDB是google开源的一个key-value存储引擎库,从版本1.2开始就能够支持billion级别的数据量了。LevelDB是单进程的服务,性能非常之高,在一台4个Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。LevelDB采用日志式的写方式来提高写性能,但是牺牲了部分读性能。为了弥补牺牲了的读性能,一些人提议使用SSD作为存储介质。
二、编译
LevelDB是一个C++库,而非Server,编译需要g++的支持,这里以1.4为例说明之。
源码可以直接从这里下载,也可以用git clone源码:
#git clone
如果上面操作都无法获取源码,也可以点击这里下载源码。
#cd leveldb && make all
此时在,当前目录(levedb)下会产生libleveldb.a和libleveldb.so,这样就可以使用了。
三、实例
一个LevelDB数据库需要有一个对应的文件系统目录名字,该数据库的所有内容都存储在这个目录下。
LevelDB的使用很简单,一般分三步走:
(1)打开一个数据库实例。
(2)对这个数据库实例进行插入,修改和查询操作。
(3)最后在使用完成之后,关闭该数据库。
#cd ../ && mkdir test && cd test && vi main.cpp
具体实例如下:
#include
#include
#include
#include
int main(int argc, char** argv)
{
leveldb::DB* db;
leveldb::Options options;
// 如果打开已存在数据库的时候,需要抛出错误,将以下代码插在leveldb::DB::Open方法前面
options.create_if_missing = true;
// 打开一个数据库实例
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
// LevelDB提供了Put、Get和Delete三个方法对数据库进行添加、查询和删除
std::string key = "key";
std::string value = "value";
// 添加key=value
status = db->Put(leveldb::WriteOptions(), key, value);
assert(status.ok());
// 根据key查询value
status = db->Get(leveldb::ReadOptions(), key, &value);
assert(status.ok());
std::cout<
std::string key2 = "key2";
// 添加key2=value
status = db->Put(leveldb::WriteOptions(),key2,value);
assert(status.ok());
// 删除key
status = db->Delete(leveldb::WriteOptions(), key);
// 查询key2
assert(status.ok());
status = db->Get(leveldb::ReadOptions(), key2, &value);
assert(status.ok());
std::cout<
status = db->Get(leveldb::ReadOptions(), key, &value);
if (!status.ok())
{
std::cerr<
else
{
std::cout<
// 在对数据库进行了一系列的操作之后,需要对数据库进行关闭,该操作比较简单即删除该对象即可
delete db;
return 0;
}
#g++ -o main main.cpp ../leveldb/libleveldb.a -lpthread -I../leveldb/include
实例编译完成后,如下来执行即可看到结果:
#./main
value
key2==value
key: NotFound:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05