
一、简介
LevelDB是google开源的一个key-value存储引擎库,从版本1.2开始就能够支持billion级别的数据量了。LevelDB是单进程的服务,性能非常之高,在一台4个Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。LevelDB采用日志式的写方式来提高写性能,但是牺牲了部分读性能。为了弥补牺牲了的读性能,一些人提议使用SSD作为存储介质。
二、编译
LevelDB是一个C++库,而非Server,编译需要g++的支持,这里以1.4为例说明之。
源码可以直接从这里下载,也可以用git clone源码:
#git clone
如果上面操作都无法获取源码,也可以点击这里下载源码。
#cd leveldb && make all
此时在,当前目录(levedb)下会产生libleveldb.a和libleveldb.so,这样就可以使用了。
三、实例
一个LevelDB数据库需要有一个对应的文件系统目录名字,该数据库的所有内容都存储在这个目录下。
LevelDB的使用很简单,一般分三步走:
(1)打开一个数据库实例。
(2)对这个数据库实例进行插入,修改和查询操作。
(3)最后在使用完成之后,关闭该数据库。
#cd ../ && mkdir test && cd test && vi main.cpp
具体实例如下:
#include
#include
#include
#include
int main(int argc, char** argv)
{
leveldb::DB* db;
leveldb::Options options;
// 如果打开已存在数据库的时候,需要抛出错误,将以下代码插在leveldb::DB::Open方法前面
options.create_if_missing = true;
// 打开一个数据库实例
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
// LevelDB提供了Put、Get和Delete三个方法对数据库进行添加、查询和删除
std::string key = "key";
std::string value = "value";
// 添加key=value
status = db->Put(leveldb::WriteOptions(), key, value);
assert(status.ok());
// 根据key查询value
status = db->Get(leveldb::ReadOptions(), key, &value);
assert(status.ok());
std::cout<
std::string key2 = "key2";
// 添加key2=value
status = db->Put(leveldb::WriteOptions(),key2,value);
assert(status.ok());
// 删除key
status = db->Delete(leveldb::WriteOptions(), key);
// 查询key2
assert(status.ok());
status = db->Get(leveldb::ReadOptions(), key2, &value);
assert(status.ok());
std::cout<
status = db->Get(leveldb::ReadOptions(), key, &value);
if (!status.ok())
{
std::cerr<
else
{
std::cout<
// 在对数据库进行了一系列的操作之后,需要对数据库进行关闭,该操作比较简单即删除该对象即可
delete db;
return 0;
}
#g++ -o main main.cpp ../leveldb/libleveldb.a -lpthread -I../leveldb/include
实例编译完成后,如下来执行即可看到结果:
#./main
value
key2==value
key: NotFound:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11