
大数据OR能源大数据_数据分析师培训
一、为什么谈大数据?(why)
小编对于克强总理谈到的“大数据”很是关心,于是开始进行了信息搜集。在Web of Science数据库,小编对“大数据”相关领域已发表的SCI/SSCI论文进行了统计分析。
【检索条件:主题=(“Big Data”),时间跨度=(所有年份),数据库=(SCI-EXPANDED,SSCI),检索日期=(2015/03/06)】
看到图1,小编也是有些吃惊了。2014年,“大数据”相关的SCI/SSCI论文发表了902篇,占历年全部发表论文数的59.3%(论文发表总数:1521篇)。2015年,有可能继续 “疯狂”。
图 1 大数据相关领域SCI和SSCI论文发表与引用统计
二、什么时候开始研究大数据的?(when)
2006年,“大数据”领域的第1篇论文诞生。需要说明的是,这一年总共只发表了3篇论文。2008年,《Nature》推出了“大数据”专 刊。2011年,《Science》推出了关于数据处理的专刊“Dealing with Data”。2012年,美国奥巴马政府宣布推出“大数据的研究和发展计划”。
到2015年,大数据经历短短9年时间,似乎在以 “违反”学术规律的速度生长、扩散。
三、大数据是什么?(what)
近年来,大数据在创新思维、管理理念、信息技术等方面的影响力和效果日益显著,受到各方高度关注。但遗憾的是,大数据目前尚没有统一的定义。
小编尝试整理了“大数据”理念在数据采集、处理、应用等方面的特征:一是可对不同领域、不同类型、不同渠道的跨界数据进行系统采集与分析。例 如,意大利米兰电信公司将电话通信大数据与人口、地理数据进行集成采集与分析,实现对城市热点商业区域、交通拥堵区域的动态预测。二是可对各种在线行为进 行全过程记录,大幅改善处理效率、成本、响应时间。以IBM公司发布的大数据技术BLU Acceleration为例,查询速度比传统技术快100倍以上,数据存储成本只有其十分之一。三是与应用创新联系更为密切,成为推动管理创新、商业模 式创新与产业革命的内在动力。例如,阿里集团将客户网络活跃度、网上信用评价、余额宝交易量等在线数据转化为客户信用评级,在金融信贷业具有颠覆式创新意 义。
四、哪些国家(地区)/机构在研究大数据?(where)
排在首位的依然是美国,论文发表数755篇,占所有发表数1521的49.6%。其次是中国,论文发表占比15.0%。不错的成绩嘛。
再来看看研究大数据发表成果最多的研究机构。恭喜中科院,中科院超越哈佛大学成为了发表大数据成果最多的研究机构!(注:小编去年查过排在榜首的是哈佛)。
图 2 国家/地区排名前十统计
图 3 研究机构排名前十统计
五、谁才是大数据研究领域的真正专家?(who)
谁是大数据研究领域的真正专家?让我们用数据说话。(这算不算“大数据”的应用呢?)
“大数据”领域发表文章最多的是“ANONYMOUS”(译为“匿名的”)!竟然无人认领发表SCI/SSCI文章最多的专家称号(注:SCI/SSCI论文发表在某种程度上反映了作者在该领域的影响力),真是遗憾。
图 4 研究作者排名前十统计
六、如何使用大数据?(how)
“大数据”都在哪些方面得到了应用?
排在前四位的研究方向依次是计算机科学、工程学、科学技术和商业经济,发表文章共计889篇,全部论文占比58.4%。
综合来看,小编相信,大数据在能源管理中的应用前途还是非常光明的。
图 5 研究方向排名前十统计
七、能源大数据?
以主题=(“Big Data” AND “Energy OR Power”)在Web of Science数据库进行搜索,也许会有意外的发现啊……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07