京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的数据开放与安全_数据分析师
据Gartner统计,随着大数据技术的成熟,全球超过60%的运营商已开始投资大数据,在当今大数据时代,运营商纷纷借助大数据技术实现从网络资产运营到数据资产经营的转型,数据开放为实现这一转型的关键举措,随着数据开放逐步开展,如何保障数据开放带来的安全与隐私问题也日益呈现,为此如何在大数据时代既能通过数据开放获取商业利益,又能保障数据开放中的数据安全与隐私,是运营商目前迫切需要应对的挑战。
1 数据开放是大数据时代的趋势
运营商发展大数据将会经历三个阶段:从自发的利用内生数据解决问题、到基于数据的应用商业化、再到进入数据共享交易时代,现大部分运营商大数据发展处在数据的商业化阶段,数据开放是实现数据商业化最主要方式,运营商目前主要进行两大类数据开放:
基于群体的数据开放:运营商提供针对区域用户特征的统计分析服务报告(比如基于地理位置栅格的人流信息等),可用于支撑政府规划和一些具备市场调研特征的商业用途,比如帮助提供商家基于区域人流的店面选址、与咨询机构合作等提供咨询报告等。
基于个体的数据开放:运营商提供针对用户行为偏好的用户画像分析服务,支撑运营商内部以提升用户体验为目标的运营商业务和一些需要精准判断目标人群的商业用途,比如与广告公司合作提供用户所需要的营销广告、针对用户对于旅游/汽车/航空等垂直行业的需求偏好提供有针对性的营销。
2 数据开放中数据安全与隐私挑战
大数据技术推动巨大创新,运营商在基于数据资产的数据开放获得收益的同时,也产生了新的隐私问题,其影响远远超出了当下备受关注的移动互联网线上广告问题,这些影响不仅需要一个更具广泛性的国家法规,数据使用获得用户的许可,并对数据进行审核;在大数据时代的的数据开放中,数据使用和重复使用包括与第三方的合作,将会使安全与隐私得到更高的挑战,需要建立数据的使用和管理机制,并对数据更好的使用进行授权,以使人们能够从其个人信息的开放与使用中获利,当然前提是个人的信息安全,敏感信息得到保护。
作为提供数据服务的运营商为了更好的开展数据开放获取长期的商业利益,需要提高数据服务的透明度,让消费者有权更清楚的知晓,个人的哪些数据被使用,使用的数据作为哪种商业用途及其时效性,并明确对使用的数据提供安全保护,运营商需要提供通道,实现用户可以对其个人数据要有充分的控制权,可以随时查阅、取消对个人数据的使用和处理。
全球包括欧盟、美国等都在积极进行数据安全与隐私的规范制定与完善,数据开放的安全与隐私保护需要参考全球法规与业界通用隐私安全设计和个人数据隐私保护指导原则,对敏感信息进行技术保护,同时对个人数据的访问控制、加密存储、安全传输等提供安全保护机制。
3 华为Open Data Bus解决方案
从技术角度来看运营商数据开放过程,需要有一个安全通道确保运营商大数据能力与数据用户应用的数据交易是安全、可靠且合规的。
华为Open Data Bus解决方案继承华为在电信领域可靠性设计和安全设计的丰富经验积累,依靠专业法律咨询团队对全球100多个国家和地区法律法规的理解,采用合适的措施(例如授权,泛化,加密,安全及隐私保护策略适配), 使得用户数据和隐私能够得到充分保护。
3.1 数据开放管理
华为认为在运营商以数据开放为目的的数据使用过程中获得用户授权是第一位的;并在用户数据"被开放"的过程对用户来说是透明的,即用户可以简单的获取与自己相关的数据的来源与去向;可以通过简单的操作收回授权,甚至可以自助选择与自己相关哪一类数据不允许被使用。这种是使用户能够感知自身数据流向的管理策略,除了可以使运营商获得价值数据,也可以提高用户对自身数据安全的感知程度。Huawei Open Data Bus 包含数据开放管理模块,为运营商提供便利的用户数据开放管理工具,向数以千万计的终端用户提供友好操作界面,方便终端用户对自身数据进行管理。
3.2 开放参考模型
开放参考模型的目的是将复杂的法律法规条文变成简单可配的元数据标签,为每一条数据的开放提供一个仲裁依据,提供数据可视化端到端的数据隐私策略支撑。作为一个服务全球100多家运营商的provider,华为Open Data Bus隐私参考模型也必须是国际化的。通过对全球多个国家和地区法律法规分析,把运营商大数据的常见的数据类型进行分级分层,对每个层面的数据进行定义,为数据的开放和使用提供标准的隐私法律法规参考。通过灵活的安全及隐私保护策略适配,可以满足不同国家的政策要求及不同客户的业务需求。
3.3 数据使用过程的安全与因素
数据开放将运营商从封闭的电信网络强行带入了自由开放的英特网,更多的威胁来源和攻击方式使得在数据开放在没有可靠的安全保证机制下寸步难行。华为Open Data Bus通过端到端的数据安全和隐私保护措施,例如认证授权,安全传输,数据加密,匿名化(包括泛化和随机化),假名化, 数据使用审计,数据安全删除等,使得Open Data Bus在IT领域同样驾轻就熟。
展望:大数据安全与隐私解决方案的趋势
现阶段运营商主要是利用自有的数据资产实现数据开放,凭借运营商公信力与庞大的数据资产优势,为了更好的使用数据资产提供服务,未来运营商将纳入第三方数据并构建数据集市生态圈。在数据集市生态圈中如何实现多个大数据分析源的共享交易与安全隐私保护,将是大数据安全与隐私解决方案需要面临的新挑战。
随着大数据数据开放的商业模式越来越成熟,各国将会进一步规范数据安全与隐私保护,同时各国大数据开放的形态呈现多样化,如何快速的匹配各国政府的法规要求并快速响应数据开放的商业诉求,将是大数据安全与隐私解决方案需要面临的另一新挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27