
大数据连续上榜两会 iUAP誓做平台支撑
每年的“两会”期间,网民都会热议代表们的提案。媒体是关注者也是报道者,有些媒体还用“大数据”技术来分析两会代表们的属性,比如年龄、职业、学历、性别等。一个个具体而生动的数字让民众更了解两会及代表。大数据就是如此神奇,可以让一个你看似高深的问题变得更直接、易懂。
“大数据”近两年热度一直不减,两会提案都时常看到这个词。2013年,安徽移动总经理郑杰在提案中建议“大数据应该上升为国家战略”。2014年雷军建议“加快实施大数据国家战略”。随着大数据技术的成熟以及应用的成果初现,2015年两会提案中,“大数据”更是一个热词,且内容更落到实处。
金融行业,全国政协委员、建行原监事长谢渡扬建议:将银行业作为重点示范行业,率先启动,以带动和推动大数据应用在我国的发展;公共外交层面,完美世界CEO萧泓提出:将大数据应用于公共外交领域,以进行国家品牌建设。建议中国涉公共外交部门应建构基于大数据思维的新型决策机制。
从不同时间,不同的提案内容可以看出,大数据已经慢慢发展为整个产业的应用高度。起初,大数据是企业用于研究内部数据,之后延伸向外部数据尤其重点放在消费数据上,以研究客户行为。再成熟些,就是社 会大数据,即将大数据应用到整个社 会和产业中,以此作为产业发展的研究依据,从而促进社 会发展。这是大数据发展的规律。
“对于处于不同行业的企业而言,若想从大数据中获取创新的源泉,不妨从三大战略入手:产品战略、客户战略、生态系统战略。“记者采访用友集团iUAP中心大数据分析高级专家曾小青博士时,他给企业提出了这样一个建议。
曾小青表示,这从大数据对企业由浅到深的价值可以很好体现。
价值一:重塑客户行为。 利用客户交互数据重塑客户行为,这类数据使企业可以预测和引导市场尚未出现的需求,进而创造新的利润。比如Amazon推荐;
价值二:开发新产品和服务。企业借助数据获取洞见,支持日常业务以服务于现有市场和客户。瞄准新市场创新和设计全新的业务模式。比如个性化车险;
价值三:数据生态系统视野。企业可以从生态系统中的其他企业处获得补充数据。这种生态系统以适当的合作战略为基础。比如百 度开发数据。
然而,大部分机构和传统企业都普遍面临着大数据应用困境,曾小青博士用三个字来概括“大、快、智”。大,数据存储与计算规模瓶颈;快,数据数据处理技术不够高效;智慧,数据分析技术不够智能。
“我们iUAP其中就包含大数据技术,希望以平台的方式,来解决大数据的应用困境”曾小青告诉记者,用友iUAP企业互联网开放平台包括了大数据、移动、云计算、企业社交等核心技术。其中的数据平台,就是将大数据存储、分析和智能化处理等一整套核心能力通过平台化方式对伙伴提供服务。合作伙伴和传统企业将能够使用iUAP的大数据架构,通过处理机构和企业自身积累的大数据,进行挖掘处理,来改造和优化传统行业的企业管理、产品服务设计、商业模式等环节,为创新发展装上全新的动力引擎。用友iUAP所包含的大数据产品有数据平台和商业分析平台。通过这两个部分可以很好解决大数据“大“、”快“、”智“的问题。
数据平台架构
商业分析平台即用友BQ。用友BQ利用大数据处理技术,能够将各类数据进行快速整合,实现对海量数据的加速处理与实时分析,再通过丰富的数据可视化手段,提供商业分析决策支持所需的数据和信息,灵活快速地响应管理和业务变化,为企业和公共组织搭建一套灵活、完善的辅助决策分析体系。
用友BQ商业分析平台架构
数据平台又包含UDH大数据平台和AE数据处理平台。他们可满足企业结构化、非结构化数据统一处理,分析与实务统一处理的需求。可支撑各种可能的业务形态。
第一,大。实时集成可支持5000个在线用户,产生的业务数据集成延迟小于1秒;支持PB级大规模数据管理能力,支持传统数据库、Hadoop、大规模MPP集群,支持海量结构化数据10T以上;UDH的非结构化数据管理能力,可达到单集群100台以上;非机构化数据分析能力,每天可处理约数据量120TB,200亿条。
第二,快。用友BQ采用列存、自适应压缩、水平分区、智能索引、并行处理等技术,如果完全在内存中计算,比Hadoop MapReduce快100倍以上;如果包含磁盘数据,则快10倍以上,可实现最高50倍的分析场景性能提升。BQ基于AEDI实时处理,在内存进行数据计算,整个过程数据无落地,使用户可实时获取分析信息。
第三,智。用友BQ支持移动分析,可带来良好的可视化移动操作和高效的性能体验;数据可视化,可以很直观灵活的表达分析结果。比如提高数据地图、销售地图,无论离线和在线都可以跟这些可视化的地图整合;用友BQ里预置了丰富的算法和模型,降低客户实施数据挖掘的难度。可高性价比,大幅降低数据挖掘项目的实施成本,使大多数企业都用上数据挖掘。
另外,曾小青博士告诉记者,BQ利用iUAP 云平台完成私有云、社区云、混合云等各种复杂的云端部署。实现了应用服务器、数据库的弹性扩展,支持弹性负载均衡和自动伸缩,支持移动、社交、大数据分析、等各种新型应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18