
深度学习算法的几个难点_数据分析师培训
1、局部最优问题。
深度学习算法的目标函数,几乎全都是非凸的。而目前寻找最优解的方法,都是基于梯度下降的。稍微有点背景知识的人都知道,梯度下降方法是解决不了非凸问题的。因此,如果找到最优解,将是深度学习领域,非常值得研究的课题。
andrew在google的工作,也就是那只猫,其实训练过程是让人很费解的。为了缩短训练时间,项目组采用了分布式训练的方式。采用了1000台计算机,在不同的计算机上存储不同的训练数据,不同的训练服务器通过参数服务器进行参数的交换。{CDA数据分析师培训}训练过程开始后,所有的训练计算机从参数服务器更新当前参数,然后利用当前参数以及本机器上的训练数据,计算得到当前的梯度,通过贪婪式方法,训练到不能再训练为止,然后将参数的更新量提交给服务器,再获取新的参数进行更新。
在这个过程中,出现了不同机器在同步时间上的一个大问题。具体阐述如下:梯度下降这种方法,在计算梯度的时候,一定要知道当前参数的具体值,梯度是针对某一个具体的参数值才有意义的。但是,由于在这个系统中,计算机非常多,当计算机A从服务器上获得参数值后,完成梯度的计算得到步进量的时候,可能在它提交结果之前,计算机B已经修改了参数服务器上的参数了。也就是说,A所得到的步进量,并不是针对当前的参数值的。
论文中,作者注意到了这个问题,但是故意不去理会,结果训练结果居然不错。作者的解释是:这是一种歪打正着的现象。
为什么能够歪打正着呢?有可能是这样的:非凸问题,本来就不是梯度下降法能够解决的。如果不存在同步难题,那么随着训练的深入,结果肯定会收敛到某一个局部最优解上面去。而现在这种同步问题,恰好能够有助于跳出局部最优解。因此最终的训练结果还算不错。
作者并没有证明,这种方式,对于寻找全局最优一定是有帮助的。对于最终的结果是否一定是经验最优的,也没有证明。因此我感觉,深度学习里面,这种超高维参数的最优结果的寻优,是一个很值得深入研究的问题。它对于最终的效果也确实影响很大。
2、内存消耗巨大,计算复杂。
内存消耗巨大和计算复杂体现在两个方面。(1)训练过程。(2)检测过程。
这两个过程的计算复杂,根本原因都是庞大的参数规模造成的。比如google的这个项目,每一个位置都用到了8个模版,每一个像素,这8个模版都是不同的,因此导致最后的模版总数很大,所以训练和检测都很慢。当然,这种模版的设计法,让人不好理解,为什么不同的像素位置,模版完全不同。我还是支持以前的卷积神经网络里面的思想,不同位置的模版都是一样的,但没一个位置,模版数量就远不止8个了。这样的好处是,内存空间中,总的模板数下降了;但缺点是,计算更复杂了。
因此,如果能够找到一个好的方法,能够有效的较低计算复杂度,将是很有意义的。(比如某个邻域内如果方差极小,其实根本就没必要计算了,直接赋0.)
3、人脑机理还有很多没用上。
深度学习模拟的是人脑的其中一个很小的方面,就是:深度结构,以及稀疏性。
但事实上,人脑是相当复杂滴。关于视觉注意机制、多分辨率特性、联想、心理暗示等功能,目前根本就没有太多的模拟。所以神经解剖学对于人工智能的影响应该是蛮大的。将来要想掀起机器智能的另一个研究高潮,估计还得继续借鉴神经解剖学。
4、人为设计模版的可行性。
一直在想,为什么第一层用于检测角点和边缘这种简单特征的模版,一定需要通过无监督训练得到,如果人为实现模拟的话,能否也得到较为理想的结果呢?
从神经解剖学的成果上来看,人脑的v1区和v2区,神经细胞确实是按照规律排列的。而且都是可以人为设计的。而且,一个让人怀疑的地方就是,v1区和v2区的神经细胞,是先天发育好的,还是后天训练出来的?如果是先天的,那就是说,这种模版是可以人为设计的。
5、代价函数的设计方法。
代价函数的设计,在初学者看来,是很奇怪的。代价函数的设计,直接影响到最终的模版训练结果,可以说是深度学习中最核心的模块。
从目前已经发表的论文来看,一是考虑重构误差,二是加入某种惩罚项。惩罚项的设计有多种模式,有考虑一阶范式的,有考虑二阶范式的,各种设计可谓千奇百怪。有博文上讲到,惩罚项的作用是为了防止过拟合,但也有博文的观点是,惩罚项是为了保证稀疏性。(感觉过拟合与稀疏性是否存在某种内在联系。)
当然,代价函数的设计方法,目前还在不断探索,感觉这是一个可以发论文的点。
6、整个神经网络系统的设计。
神经网络的设计方法,包含了研究人员对人脑的理解方式。CNN、RBM,以及andrew项目组设计的变态网络,都各有各的特色。要把整个网络框架设计好,还是比较需要经验的,也是相当费脑力的。当然,这是整个领域最有研究价值的模块。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10