
大数据时代的数据保护_数据分析师
在大数据应用的时代,用户的各种行为数据成了商家转换为购买力最实际的信息。但是其中也存在着一些难点,这些难点的处理是否妥当,直接是商家利用成败的转折点。
大数据的应用
如果你做为一个中国男足的粉丝来讲,那么2014年底对你来说绝对是一个非常难忘的时刻——男足在亚洲杯小组赛三战三胜,昂首挺进淘汰赛。其中有一项很助理的工具,那就是大数据的应用——支持这一决策的数据则来自于可穿戴设备在日常训练中的数据采集和基于海量数据处理的数据分析。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。简而言之,它就是从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。
图:大数据无处不在你的身边
大数据保护的价值
既然这样的话,那么假如某一环节出现了数据的“造假”,那么这项据测就会成为一个彻底失败的东西,不仅没有半点作用,反而造成很大的负面影响的。同时,当前的数据正在成为企业用户重要的资产而存在,又因其超大量、高流速、种类多样和不确定性的特点,数据特征的改变速度已经超越了处理技术。
因此,步入大数据应用时代,企业如何将数据保存得更好、从中获得更有价值的保护……这些都是非常重要的首策。另一方面,大数据保护是否需要和应用相结合?如何体现数据保护的先进性和自动化特点?这些需要对企业人员、流程、技术等做全方位考虑吗?……等等这一系列的问题都是大数据时代下的数据保护的重要任务。
大数据保护的难点
大数据的应用,说白了就是将所有的宽泛的数据通过一系列的逻辑进行统计与分析,从而找到其中的关联,找到决策的依据点。但是如果说数据的真实性失去了的话,那么数据就不再可靠。所以说,大数据需要进行有效的保护,大数据保护的主要措施又一般是“控制”,“控制”中的主要难点就是有以下三个:
图:大数据保护的难点主要是“控制”
1.大数据的用户隐私保护
大数据未被妥善处理会对用户的隐私造成极大的侵害,那么就是影响到了根本。比如说,一个典型的例子是某零售商通过历史记录分析,比家长更早知道其女儿已经怀孕的事实,并向其邮寄相关广告信息,对这个女儿造成一些信息骚挠,影响正常生活。
一般解决方案:根据需要保护的内容不同,隐私保护又可以进一步细分为位置隐私保护、标识符匿名保护、连接关系匿名保护等。
2.大数据的可信性
用数据说话,这是管理当中很实重的一点。数据自己可以说明一切,数据自身就是事实。但实际情况是,如果不仔细甄别,数据也会欺骗,就像人们有时会被自己的双眼欺骗一样。因此,大数据可信性的威胁之一是伪造或刻意制造的数据,而错误的数据往往会导致错误的结论。
一般解决方案:用信息安全技术手段鉴别所有来源的真实性是不可能的。
3.大数据的访问控制
其实访问控制是实现数据受控共享的有效手段,根据不同场景设置相应的访问控制需求。但是也存在着难点:一个是难以预设角色,实现角色。另一个是难以预知每个角色的实际权限。
一般解决方案:根据实际管理权限进行梳理,然后映射到数据访问控制权限上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08