京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据模式让假货无处遁形_大数据培训
阿里巴巴集团首度对外披露阿里巴巴多年来的打假数据:从2013年1月1日至2014年11月30日,阿里集团在消费者保障及打假方面的投入已经超过10亿元人民币。2014年前三季度,阿里配合品牌权利人年处理600万条侵权商品链接,配合各级行政执法部门,办理侵犯知识产权案件1000余起,抓获犯罪嫌疑人近400人,涉案金额近6亿元。
智能识别从源头打击假货
处理如此海量的假货数据,仅依靠阿里2000多人的消费者保障和打假团队人工操作,是不可能完成的任务。阿里巴巴首席风险官邵晓锋称,经过多年与制假售假者的“暗战”,阿里巴巴已经构建起一套全球领先的基于互联网大数据的打假模式,既包含智能识别和追踪系统、庞大的商品样本库和数据库、精确复杂的算法、强劲的云计算能力等大数据技术手段,也包括账号认证溯源、神秘抽检等完善的管理保障体系,以及与消费者、商家、权利人和政府部门等生态体系参与者的联动机制。
“我们的打假模式是向社会开放的,欢迎更多的平台、商家、权利人等利用这套模式,从源头打击假货,还给消费者一个安全、透明的购物环境。”邵晓锋表示。
全网数据监控和检索
阿里巴巴在十几年和不法分子的斗争中,逐渐打磨出一套自成体系的打假模式,其中最核心的部分是大数据打假。简言之,就是通过智能识别、数据抓取与交叉分析、智能追踪、大数据建模等技术手段,将假货从10亿量级的在线商品中捞取出来。
这两年,阿里巴巴安全技术人员开发的文本识别引擎已经升级为语法语义分析,在引入了机器学习算法后,能够取代之前小二辛辛苦苦的人工排查,做到全网数据监控和检索。这套信息排查平台,对全网10亿级的商品数据进行全量检索和处置,支持多达60个维度的组合条件筛选,每天消息处理量2亿以上。
2013年开始,阿里巴巴逐步建立了全球最专业的图片侵权假货识别系统,通过图片算法技术实时扫描来识别图片中商品的品牌,进而判断该商品是否为假货。
阿里巴巴数据团队正在不断优化各种假货模型,已达到实时分析数据每秒1亿次的速度。这些模型对淘宝数百万卖家进行实时评分,识别出具有售假风险的高危用户和售假团伙。
实人认证让假货店主无处遁形
网络DNA认证体系是阿里巴巴防控假货的第二道闸门。
淘宝网针对卖家的实名审核越来越严格,正在从“实名认证”向“实人认证”迈进。一名资深淘宝卖家表示,以前淘宝开店只核查身份证号码,后来要本人拿着身份证拍照,但还是有人通过买卖身份证号和假照片蒙混过关。2014年淘宝的实名认证又升级了,根据用户不同情况,额外要求根据指定手势拍照、手持当地报纸拍照,甚至小二电话核实等。其中指定手势库有数十种随机手势,不定期地进行手势更新,最大限度避免造假者钻漏洞。
阿里巴巴正在逐步打通淘宝、天猫、阿里巴巴等平台上的账号系统,建立卖家的售假信用体系数据库,当卖家历史记录达到危险值后,就会推送给客服做为处罚的判断依据。
除网络DNA认证体系保障外,阿里巴巴专门成立了一支总数超过7000人的知识产权保护管理团队,由公司工作人员和志愿者组成,每天在网上巡逻举报侵权假冒商品。截至2014年11月,阿里巴巴针对消费者投诉、时令商品、政府公示等重点问题,通过“神秘买家”共开展购买鉴定62783批次,涉及食品、保健品、服装、鞋类、小家电等28个行业。
建立协查平台从线上追到线下
阿里巴巴打假模式的最后一环是联动包括品牌权利人、政府部门在内的电商生态参与者实现的线下打击。阿里巴巴配合公安、质检、国知局、版权局等政府部门,实现售假线索上报、线下打击、建立协查平台、共建行业联盟、建立维权工作站、制订行业管理标准、指导推进行业性合作定期汇报与交流的一套工作流程。
2014年,阿里巴巴联动各地公安机关,破获18个制假售假集群,端掉200多个窝点,抓获犯罪嫌疑人近400人。
淘宝建立了全球领先的知识产权侵权保护线上处理平台——IPR投诉平台:集合了资质提交验证,权属备份,反通知处理,数据分析等众多功能于一体,通过大数据定义诚信权利方机制,对屡次被投诉的卖家采取更为严格的处罚机制。目前,该平台拥有全球5.6万注册权利人,其中深度合作的品牌商达1000多家,包括路易威登、阿迪达斯、三星等国际知名品牌权利人,以及美国电影协会、国际反假冒联盟、外资出版商联盟、韩国知识产权保护协会等国内外权利人协会组织。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27