京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析方法有哪些_数据分析方法
随着大数据的到来,数据分析师成为大数据时代一颗冉冉升起的新星,现在企业越来越重视大数据,数据分析师这个职业也成为企业争抢的对象。那么数据分析师的分析数据的方法都有哪些呢?
1、数据分析遵循的原则:
① 数据分析为了验证假设的问题,提供必要的数据验证;
② 数据分析为了挖掘更多的问题,并找到原因;
③ 不能为了做数据分析而坐数据分析。
2、步骤:
① 调查研究:收集、分析、挖掘数据
② 图表分析:分析、挖掘的结果做成图表
3、常用方法:
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分 类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零 售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
②回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产 品生命周期分析、销售趋势预测及有针对性的促销活动等。
③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得 属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分 等。
④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也 出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,(数据分析师)通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影 响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
⑤特征。特征分析是(数据分析师)从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提 取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
⑥变化和偏差分析。偏差包括很大一类潜在 有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理 者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。
⑦Web页挖掘。随着 Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,“数据分析师”通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重 大影响的外部环境信息和内部经营信息,数据分析师根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分 析、评价和管理危机。(cda数据分析培训)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27