京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公安与大数据应用息息相关_数据分析师
近年来,中国大规模推进平安城市级视频监控系统的发展,使得视频图像侦查(以下简称图侦)在公安刑侦业务中发挥越来越大的作用,取得的社会效益很高,进而又促进了监控系统的建设规模进一步扩大,加上高清化技术的发展和推广,直接的结果是导致相关的数据量急剧增长,价值密度越来越低。于是,监控领域也主动和被动的跨入了“大数据”的时代。
大数据并不新鲜,早已经在不少领域得到成熟的应用。与日常生活最相关的就是电商,电商通过大规模的商业数据统计、分析,可以得出潜在的商业规律,为下一步的商业行动提供依据。例如经过统计分析可以得到某个领域和时期内的消费规律,商家就可以根据这个规律来向用户提供个性化的广告服务与推荐,促成交易。之前美国的“棱镜门”事件更是大数据的高端军事应用。
公安与大数据应用息息相关
“大数据”不等同于“大数据应用”,不同行业中的数据要形成大数据应用,并非用“拿来主义”就可以解决的,要做好视频监控的大数据应用,首先要确定应用的模式和目标。大数据的应用说到底还是“有目的”的应用,没有一定明确的应用目的和方法,就没有设计大数据处理系统的依据,说白了就是“不知道要什么,那何谈怎么做?”从其他行业只能借鉴到处理系统搭建的技术,但是不能借鉴处理系统搭建的目的与输出。
如此说来,视频大数据系统的发展在哪里?从作者的看来,视频大数据的应用必然首先产生在公安业务中的图侦应用,有以下几点理由:
1.公安掌握了最多的视频数据来源。也是对视频大数据发展最直接的需求者和受益者。视频大数据的发展必然首先为公安下辖的业务服务。
2.相比于其他公安业务,图侦的应用模式多样,思维活跃,围绕着“发现线索”的目的可衍生出多种的技战法,只有从这些具体的技战法中才能提炼出需求,真正告诉系统的设计者“我们要什么”。
图侦里的大数据应用需要哪些?像商业大数据那样找规律的应用似乎还远了点,目前最实在的就是从海量视频数据里把有相同线索特征的图像给找出来,让干警发现出新的案件线索。至于“怎么找?”这就是由公安来提的应用模式了。因此,视频大数据的发展并不是简单的由技术厂商做主导,而是需要公安体制内既有刑侦实战经验,又有科技化功底的复合型人才,共同来参与视频大数据应用的发展,在此,作者也呼吁公安系统重视对于这样复合型人才的培养。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06