
BAT大数据争霸赛拉开帷幕:腾讯地图大数据登录央视
大数据是当下IT行业最时髦的词,美国奥巴马政府 甚至将大数据定义为“未来的新石油”。随着除夕腾讯地图大数据登录央视,BAT大数据争霸也拉开了帷幕。本文的作者认为,大数据的精髓在于“大”,大数据 的精妙处在于用的人越多越增持,通过这样一个模糊的宏观判断,能够完成一个精准的个体推荐,从而会让整个生产效率得到极大提高。目前,BAT巨头都把大数 据升级为集团级战略,未来一切生意都将是数据的生意。
除夕当天,央视一则“全国加班地图”的节目引起了我的兴趣。
为什么?因为这是腾讯地图开放平台提供的全国加班人群分布图。而这只是腾讯春节推出的三大热图之一!其它两个分别是红包地图、出行热力图。这是腾讯地图第一次真正展示“大数据”实力的亮肌肉。
就在业界认为地图行业是高德(已被阿里收购)、百度的“双雄会”之时,帝企鹅已经不声不响地赶上来了。
高颗粒度的腾讯“加班地图”
腾讯加班地图,是腾讯地图开放平台通过对每天超过100亿次的位置定位请求的大数据分析。比如,结合时间点的定位轨迹分析、区域分布特点、行业特征等等,从而分析得出加班用户的省份、城市、区域分布热点图。
以上图为例,图中圈比较密集、颜色偏红的地区加班指数较高,代表该地区加班人数较多,加班时间较长;颜色偏绿的区域,加班指数相对较低。
分省份看,加班人数最多的省份前三分别是广东、江苏、山西;分城市看,加班人数最多的城市前五位是我们的一线城市北京、上海、广州、重庆、深圳;
而对全国范围内区域的加班人数排序:前三的区域是北京国贸、上海南京西路、上海徐家汇, 区域排名前十中上海占3了个,北京、重庆各占2个, 广州、深圳、太原各1个。
再 进入更细的颗粒度,来看一下“城市排行”中加班指 数最高城市北京的情况:北京加班的人群主要集中在三元桥、国贸一带,指数较高,其中央视新大楼也在国贸商圈内;其次中关村和金融街加班的人也较多,同时还 能看到今天中央电视台也有不少人依然在工作岗位。而排名第二的上海的加班情况是,加班人群主要集中在徐家汇、南京西路以及陆家嘴这些地方。
这说明,腾讯地图每日定位请求达到了很高量级(百亿次),精细程度也达到了很高的颗粒度。
地图,车联网的战略制高点
为什么这两年腾讯发力猛追地图业务?
我曾写过,时间、空间是一个信息原点的根本属性,目前信息流大多基于timeline机制,因此基于位置的产业LBS将是一片巨大的蓝海。位置服务将成为移动互联网的一项基础服务,也是一个战略制高点。
线报称,lbs事业部在百度内部地位相当特殊,由于移动端入口效应的凸现,李彦宏非常重视百度地图这款产品。而马云则先后两次共斥资十几亿美元,一口气让阿里巴巴整体吞掉了高德地图。
马 化腾当然心知肚明,2013年,腾讯在战略注资搜 狗时专门留下了当时挂在搜搜旗下的soso地图,更名为腾讯地图,上升到了整个集团战略层面。2014年,腾讯注资四维,获得了最顶级的国家级地图服务资 质资源。一方面,腾讯地图产品不断打磨;另一方面,因为微信、手Q的强势拉动,腾讯地图正发力猛追。
更重要的是,移动端的超级入口正呈现马太效应,市场集中度越来越高。微信是业界公认的“超级移动船票”,有潜力成为船票的地图也许是下一个。至少,它是一个重要的基础性服务。
现在整个行业的热点之一,是车联网。当汽车之间与汽车之间通过地理服务连接起来时,产业是极为庞大的。去年,腾讯已经率先推出了“路宝”!
这一场车联网的超级入口战争,才刚刚开始。
BAT加速布局大数据
然而,在更重要的层面,地图是BAT争霸大数据的重要组成部分。
大数据,是当下IT领域最时髦的词,简单说就是从各种数据中快速获取信息价值的能力。2012年3月,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家战略,奥巴马政府甚至将大数据定义为“未来的新石油”。
美 国政府声明说,要通过提高美国从大型复杂的数据集中提取知识和管理的能力,来加强整个国家的竞争力,这被认为是跟互联网同一个级别的时代。显然大数据不止 是一个词汇,更是一门技术,是一个产业时代。而中 国作为世界上人口最多且GDP第二、互联网规模第二且增长第一的国家,在大数据层面有一个罕见的历史发展机遇。
我曾在《大数据绝不是大忽 悠》中写过,大数据的精髓在于“大”,它不是抽样而是全样,它不是盲人摸到的象腿或者是象鼻子,而是整个大象本身,大数据的精妙处在于用的人越多越增持, 通过这样一个模糊的宏观判断,能够完成一个精准的个体推荐,从而会让整个生产效率得到极大提高。
阿里巴巴、百度、腾讯,三家都把大数据升级为集团级战略。未来,一切生意都是数据的生意。
但是如果略作比较,还是存有很大差异。它不仅与其拥有的数据性质有关,也与技术基因、战略优先级和生态系统能力有关。从三大巨头的数据源看,百度是基于用户搜索行为的需求数据,阿里掌握着交易及信用数据,腾讯则掌握着社交关系数据。以后再详谈。
结束语
腾讯地图的迅速增长让人震惊,我却不意外,因为这是战略级业务。地图,依然是BAT三座大山的菜,而且是BAT争霸大数据的重要棋子。
当然,也不是谁拥有最多的用户、流量或数据,谁就在大数据领域最牛。所有关于大数据的论断都认为,大数据并不在于大,质量、性质以及谁拥有它,将决定大数据能被挖掘出来的价值和难度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30