
机器学习和文本分析_数据分析师
当计算机更好地理解了自然语言,新的领域不断被开创,例如:用户应用的人机界面的提升,更为完善搜素引擎,Cortana和Siri这样的个人助理和一些分析给定文献的工具。例如,一个新闻网站如果能够将文章里提到的人使用算法链接到维于文本中额外信息的利用,用户能够轻易分别文章所讲的显著实体(如:运动员,球队等),如图1所示:
图1 文本分析的愿景
文本分析一直是科学研究较为活跃的领域。毕竟创造所有人类知识(文本表示)不是一项轻松的工作。90年代至今的早期工作,包括Brill标签器[1]的工作确定了句子中的部分词性,[2]的工作也对新工作有一定的启示。微软研究院一直热衷于在科学领域创造新的想法,但是我们又进一步将新科技落到实处,创造出了产品级别的技术。
在这篇博客通讯中,我们简要展示了人工智能技术如何通过利用命名实体识别(NER)技术应用于文本分析。作为一个提供完整并可直接使用的机器学习功能的平台,Microsoft Azure ML包含了文本分析的基本能力,并且特别支持了NER–因此我们可以将笼统的概念与具体的设计选择联系起来。
NER是将文本与人、地点、组织、运动队伍等进行参照的技术。让我们概览一下如何利用“有监督学习”解决这个问题:
图2 命名实体识别流程图
在设计时间或“学习时间”,系统会利用训练数据创造一个学习任务的“模型”。这种方法从小部分例子中概化来处理任意新文本。
训练数据包括了人类标注的被学习的命名实体的标签。这看起来就像:“当Chiris Bosh超常发挥,迈阿密热火队将变得强大无比”。这个模型预期能够从自然的例子中学习,训练得能够从新输入的文本中识别运动员实体和队名实体。
设计时间流程的效果取决于特征提取阶段–一般而言,特征提取越多,模型越强大。比如在一个文本中和一个词相关的局部语句[比如,前k个词和后k个词]是我们人类用来将词和实体联系起来的强大特征。例如,在句子“San Francisco beat the Cardinals in an intense match yesterday”,很显然句子中提到的“San Francisco”指一个运动队而不是地名旧金山。字母大写是识别命名实体例如文中出现的人、地点的又一实用特征。
模型训练就是机器学习做的事,如:产生一个好的模型。一般而言,特征的选择是一个复杂的组合过程。有许多可以用的机器学习技术,包括感知元(Perceptron)、条件随机场(Conditional Random Fields)等。技术的选择依赖于使用有限训练数据的模型精确性、处理的素的和能够被自动学习的命名实体数量。例如,Azure ML NER模块默认支持三种类型实体:人、地点和组织。
运行时间流程的目标是输入未标记文本并且产生被创建出的模型在设计时间识别的相应的输出文本。正如人们能够观察到的一样,运行时间流程从设计时间流程服用了特征提取模块–因此,如果对于一个应用高效彻底的实体识别是必须的话,必须在运行进程中提供相对轻量的高值特性。作为一个说明性的例子,Azure ML NER模块使用了一小部分容易计算的、主要基于本地文本的特性,事实证明也十分有效。处理过程中产生的歧义通常利用Viterbi的工具解决,将实体标签分配给一系列输入单词。
值得注意的是,NER只是开始,但是却是从原始文本中捕获“知识”的重要一步。最近的博客通讯描述了NER加上一系列相关技术是如何提升Bing体育app的体验的–非常相似的NER栈也可供你在Azure ML中使用。除了NER,自然语言分词、链接和显著性、情感分析、事实提取等代表了提升用户文本相关应用体验的重要的步骤,这是能够帮助你使文本“生动”的额外技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18