
传统行业如何快速搭建大数据团队
在越来越多商城沦为“试衣间”、电器卖场沦为“产品体验店”、建材市场沦为“材料展示中心”的今天,越来越多的传统行业已经意识到他们需要变革,需要用大数据的手段来帮助他们突破重围。
大数据的起源要归功于互联网、电商、电信运营商、金融等行业,由于这些行业自身的特点,在生产运营过程中能够天然获取海量的数据,他们是大数据行业的先行者。
但可以断言,大数据更大的需求、有广泛的应用前景仍然在传统行业,大数据将会是传统行业适应互联网时代的最佳结合点。
著名服装品牌ZARA就是传统行业利用大数据为企业重新注入活力的例子。ZARA通过整合线下客户对衣服的体验信息与线上网民喜欢的产品或趋势信息,及时改进产品样式,在互联网时代实现了线下零售店销售成绩的完美逆袭。
那么,传统行业要做大数据团队,要做好2个准备。
1、具备大数据思维
能拿到什么数据?
这些数据有什么用?
怎样用这些数据?
许多餐厅都非常关注如何在空闲时刻的人气聚集问题,比如用优惠的下午茶吸引人气。为达到这个目的,我们可以获取客户的点餐内容、用餐时间、用餐人数,并由服务员顺便收集客户特征的情况(年龄范围,是否家庭聚餐,是否商务宴请等,客户的意见反馈等)。
这样,我们就可以通过大数据知道哪些菜式受欢迎?哪些菜式需要改进?喜欢某个菜式的人到底是什么人?
发现的有些结论会比较明显,是有经验的餐厅管理者能够通过某些传统方式得到的。但是,有一些发现必定是有经验的管理者都难以察觉的。而且,大数据的方式也能够让餐厅管理者的反应更加精准有效、更加迅速。
2、大数据团队,你准备好了吗?
提到大数据人才,往往大家想到的是具备大数据专业知识的专家,显然这个角色在传统行业以往的运作过程中是缺失的。所以,既然要构建大数据团队,必须要有大数据专业背景的人才。
某全球500强的通信运营商重金请国际知名咨询公司做大数据规划,然后压给IT部门按此方案执行,IT部门欲哭无泪,因为如果按这些专家做出的规划来做,公司全部系统、所有流程制度都要推倒重来,所以这个方案完全没法落地。
大数据不能脱离行业和企业本身去谈技术,那是空中楼阁;脱离大数据思维的分析,将导致数据的死应用。
所以,传统企业组件大数据团队,不仅需要大数据的技术人才,还需要有深厚的行业背景并具备大数据思维的勇于变革者。
传统企业在建设大数据团队时,容易陷入3个误区。
误区1:挖个大数据牛人,就能搞定
很多企业认为建设大数据团队,只要把牛逼的人才挖过来,就能够把公司的大数据做好。最终的结果往往是一流的人才来到企业后水土不服,并不能发挥出期望中的作用。
其实不难理解,同样是利用大数据进行客户画像、挖掘客户需求。对于电商而言,在电商平台建设之时,很多数据就已经相对规整的存储系统里了,只需要通过网站流量统计工具,分析用户流量来源和特点;然而,对于传统行业而言,先得搞清楚的是企业内部的运作流程和每个大大小小系统上能够提供什么数据,可能根本没有现成的数据给你。
虽然分析目标一样,但是数据获取方式、业务流程、分析重点、应用场景都截然不同,在电商方面牛逼的大数据人才,可能在某些行业知识上是缺失的,难以适应传统行业。因此,大数据人才的引进需要充分考虑人才和企业的适配性。
误区2:直接交给专业公司,坐等收获
传统企业认为,既然我缺乏大数据团队,那我直接请专业大数据公司、咨询公司搞定就好了,又专业,见效又快。
如果企业如此选择,自己的大数据团队就很难建起来了。专业团队干活时,企业人员参与不够;等专业团队撤离之后,自有团队接不上,原有的大数据成果也会在闲置中最终变得无用,企业在付出巨额酬劳后还是做不好大数据。
误区3:A公司做到很好,直接把经验搬过来
在ZARA建立大数据团队,收集并分析线下客户意见,从而改进产品款式大获成功后,H&M一直想跟上Zara的脚步,希望利用大数据改善产品流程,成效却不明显,两者差距愈拉愈大,这是为什么?
Zara用大数据最重要目的是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,根本无法支撑大数据提供的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与Zara两周相比。
很多企业没有大数据团队建设经验,看到别人的成功经验,就想直接照搬,却没有考虑到不同行业有不同特征,就算同一行业中的不同企业,其组织架构、管理方式、生产方式也有很大的区别,这很可能导致大数据团队建设走上失败。
我们认为,传统企业在搭建大数据团队时,要做到以下几点:
1、老大不参与?那可不行
中国有句老话叫做“屁股决定脑袋”,具体办事人员往往难以在全局和宏观的高度把握大数据对于一个企业的应用规划和价值。
企业推行大数据的最终目的,是要让它成为公司决策的“大脑”、市场销售的“指挥棒”,说到底,大数据要能够支撑方方面面的工作,是整个企业级别的大事。
所以,大数据战略的推进,需要企业领导者充分参与,才能保证不跑偏。否则,大数据项目只会沿袭旧有的运营模式或流于形式。
2、先内部“组队”,专家只能做“外援”
企业做大数据要先组队:除了“外援”,自己企业里搞IT建设的、做市场的、做销售的、做服务的、搞管理的都得配上。简单来说,就是这个队伍里,必须有“做数据”的人、“分析数据”的人和“用数据”的人。
“外援”总归是要离开的,只有通过大数据的前期实施,实现自己大数据团队的快速成长,最终才能达到自有团队独立、持续应用大数据的目标。
3、先尝尝大数据的“味道”,再谈怎么做
很多企业做大数据,一开始就大张旗鼓做建设。要知道大数据平台一旦建起来,若是不好用或是有问题,再来改,搞不好就是全盘颠覆。
所以,建议在建大数据平台之前,先花一点时间做大数据的尝试。比如,对于要开展的一个促销活动,给出大数据的支撑。即便是最简单的大数据尝试,也能让我们发现搭建大数据体系时可能存在的问题。
4、做大数据就得“私人定制”
数据拿不到?流程走不通?系统和系统之间无法交互?这些看似不大的问题,却是大数据在未来是否能够发挥效力的底层基础。把好企业的脉,发现潜在的问题,才能够最大程度的发挥大数据的效力。
结束语
互联网诞生时,有人说“在网上,没人知道你是一条狗”。大数据时代,我们不但知道你是一条狗,而且知道你是一只小资、很宅的金毛,知道你爱吃RoyalCanin的狗粮,还知道你喜欢红色。
任何时代的变革,一旦开始就不可逆。传统企业要做的,是顺应变革,快速组建自己的大数据团队,借以发现属于自己的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21