京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以解决问题的姿态玩大数据_数据分析师
2011年,著名管理咨询公司麦肯锡声称:“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来。”由此引发了大数据的热潮,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,IBM,微软、谷歌、亚马逊等大型企业纷纷投入。中国政府紧接着提出“十二五国家政务信息化建设工程规划”,北京、上海、广东等地陆续推出大数据研发战略,阿里、百度、腾迅、华为等大型企业都已涉足该领域,更有许多新兴企业致力于此,大数据成为了继物联网、云计算、移动互联网之后,又一个信息技术产业发展的制高点!
所谓大数据,必须有足够大的数据量才能发挥它的价值。但是,由于现阶段互联网数据真实性的问题,物联网数据量不够的问题,以及数据安全的问题,对大数据走向应用产生了较大束缚,以至于大部分大数据应用只能存在于“实验室中”,且大数据厂商开始纠结单点上的数据精度,单这一点便是有悖于大数据发展常规的。
在如此现状之下,罗克佳华—这家有着计算机系统集成一级资质,属“应用基因”系的企业涉足大数据,是否能够独善其身,让大数据概念回归本位呢?且看罗克佳华董事长李玮在接受本刊专访时的“如是说”。
我们不是实验室
“罗克佳华做大数据,从不追求一个点的精度,我又不是实验室!我要通过广泛布点的方式获取更多的数据,找到源头,提供解决问题的依据,也就是说,罗克佳华从来不做实验室里的大数据,只从解决问题的角度做可用的大数据。”李玮一句话,态度明确:我—罗克佳华做的所有工作都是以解决问题为目的,以应用为宗旨。
李玮说,首先罗克佳华是一家标准的物联网企业,因此就要做物联网企业该做的事。那么,物联网企业该做什么呢?“我们认为,物联网的规模性必定导致集中的数据服务,也就是说物联网的大量感知终端将产生前所未有的集中的数据量,而这些集中数据通过各种算法,依据各种需求,将延伸出无以数计的服务,这些服务才是物联网的真正价值所在。”而罗克佳华这些年,不管是卖设备,还是卖解决方案,都没落下一件事,就是提供服务。因此,在物联网时代,依据物联网发展线路图,罗克佳华将自己的发展布局做了更为清晰的调整:走云+端之路,“云+端的意思,就是物联网技术和数据服务的结合”。
如何提供更好的服务,罗克佳华也并非一开始就找到了门路。比如在环保监测方面,也做了多种尝试,比如先是重视监测,后来才发现“点多面广的综合监测”得到的效果更好,便将轻监测、广布点的模式推广到其他诸如农业溯源、煤矿安全等领域中。
例如罗克佳华为北京通州做的环保物联网系统,将所有的环保信息化系统进行整合,并结合大家关注的空气质量问题,在全区范围布设了 500个监测点,进行物联网监测,同时将各个工业污染源、农村面源、汽车尾气等导致空气质量变化的排放清单进行实时分析,不仅做到了物联网监测,也充分发挥了数据分析优势,实现了对空气质量的预警预报,以及对环保工作的综合优化管理。
愿景VS红线
至此,罗克佳华的“智能端”和“云服务”形成了一种相辅相成的促进作用,计划在几年内成为节能、环保领域内最强的物联网服务型企业。但成功之路必有坎坷,云+端模式要发展有一个非常重要的基础条件,即政府和行业对数据质量、价值、权益、隐私、安全等产生充分认识,出台量化与保障措施。也就是“数据权属”和“企业观念”两个问题。而正如前文所言,中国目前仍处在大数据的起步阶段,相关立法颇多空白,国内企业的意识也有待转变。
罗克佳华的服务方式是通过监测系统获得真实有效的数据进行分析,可几乎所有用户都在系统布设之后谈及数据保密问题,对项目产生了巨大的干扰。更有甚者,罗克佳华曾试图将一些污染源数据向同行的企业开放,便于他们在对比中提高自己,但这些隐去了名字的数据在不久后就被企业告了状,最后由政府出面叫停。
“物联网数据经常会触到红线,数据运营,如履薄冰啊!”李玮直言数据权属问题是挡在他们身前的“拦路虎”,更是他们将来必须解决的核心问题。不说罗克佳华有许多政府合作项目,导致权属问题更加复杂,光是环境数据及工业设备信号等公共数据如何界定、如何共享都已是非常纠结的问题。
不过,虽然有这方面的忧虑,但毕竟前路漫漫,还有许多未知数,罗克佳华在行动上并没有丝毫的犹豫。本着应用为先的原则,只要是有利于推广和应用的项目,不管是政府买单或是市场化,他们都会积极去做。为了拿出更加专业的精品,他们更以开放的姿态寻求跨界的合作企业和专家团队。“我们做技术的,做好技术,社会要发展,体制待改善,机会就有的。物联网数据要和同行业开放才会更有活力和竞争力,开放的意识形态才会造就开放的国家。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12