
以解决问题的姿态玩大数据_数据分析师
2011年,著名管理咨询公司麦肯锡声称:“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来。”由此引发了大数据的热潮,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,IBM,微软、谷歌、亚马逊等大型企业纷纷投入。中国政府紧接着提出“十二五国家政务信息化建设工程规划”,北京、上海、广东等地陆续推出大数据研发战略,阿里、百度、腾迅、华为等大型企业都已涉足该领域,更有许多新兴企业致力于此,大数据成为了继物联网、云计算、移动互联网之后,又一个信息技术产业发展的制高点!
所谓大数据,必须有足够大的数据量才能发挥它的价值。但是,由于现阶段互联网数据真实性的问题,物联网数据量不够的问题,以及数据安全的问题,对大数据走向应用产生了较大束缚,以至于大部分大数据应用只能存在于“实验室中”,且大数据厂商开始纠结单点上的数据精度,单这一点便是有悖于大数据发展常规的。
在如此现状之下,罗克佳华—这家有着计算机系统集成一级资质,属“应用基因”系的企业涉足大数据,是否能够独善其身,让大数据概念回归本位呢?且看罗克佳华董事长李玮在接受本刊专访时的“如是说”。
我们不是实验室
“罗克佳华做大数据,从不追求一个点的精度,我又不是实验室!我要通过广泛布点的方式获取更多的数据,找到源头,提供解决问题的依据,也就是说,罗克佳华从来不做实验室里的大数据,只从解决问题的角度做可用的大数据。”李玮一句话,态度明确:我—罗克佳华做的所有工作都是以解决问题为目的,以应用为宗旨。
李玮说,首先罗克佳华是一家标准的物联网企业,因此就要做物联网企业该做的事。那么,物联网企业该做什么呢?“我们认为,物联网的规模性必定导致集中的数据服务,也就是说物联网的大量感知终端将产生前所未有的集中的数据量,而这些集中数据通过各种算法,依据各种需求,将延伸出无以数计的服务,这些服务才是物联网的真正价值所在。”而罗克佳华这些年,不管是卖设备,还是卖解决方案,都没落下一件事,就是提供服务。因此,在物联网时代,依据物联网发展线路图,罗克佳华将自己的发展布局做了更为清晰的调整:走云+端之路,“云+端的意思,就是物联网技术和数据服务的结合”。
如何提供更好的服务,罗克佳华也并非一开始就找到了门路。比如在环保监测方面,也做了多种尝试,比如先是重视监测,后来才发现“点多面广的综合监测”得到的效果更好,便将轻监测、广布点的模式推广到其他诸如农业溯源、煤矿安全等领域中。
例如罗克佳华为北京通州做的环保物联网系统,将所有的环保信息化系统进行整合,并结合大家关注的空气质量问题,在全区范围布设了 500个监测点,进行物联网监测,同时将各个工业污染源、农村面源、汽车尾气等导致空气质量变化的排放清单进行实时分析,不仅做到了物联网监测,也充分发挥了数据分析优势,实现了对空气质量的预警预报,以及对环保工作的综合优化管理。
愿景VS红线
至此,罗克佳华的“智能端”和“云服务”形成了一种相辅相成的促进作用,计划在几年内成为节能、环保领域内最强的物联网服务型企业。但成功之路必有坎坷,云+端模式要发展有一个非常重要的基础条件,即政府和行业对数据质量、价值、权益、隐私、安全等产生充分认识,出台量化与保障措施。也就是“数据权属”和“企业观念”两个问题。而正如前文所言,中国目前仍处在大数据的起步阶段,相关立法颇多空白,国内企业的意识也有待转变。
罗克佳华的服务方式是通过监测系统获得真实有效的数据进行分析,可几乎所有用户都在系统布设之后谈及数据保密问题,对项目产生了巨大的干扰。更有甚者,罗克佳华曾试图将一些污染源数据向同行的企业开放,便于他们在对比中提高自己,但这些隐去了名字的数据在不久后就被企业告了状,最后由政府出面叫停。
“物联网数据经常会触到红线,数据运营,如履薄冰啊!”李玮直言数据权属问题是挡在他们身前的“拦路虎”,更是他们将来必须解决的核心问题。不说罗克佳华有许多政府合作项目,导致权属问题更加复杂,光是环境数据及工业设备信号等公共数据如何界定、如何共享都已是非常纠结的问题。
不过,虽然有这方面的忧虑,但毕竟前路漫漫,还有许多未知数,罗克佳华在行动上并没有丝毫的犹豫。本着应用为先的原则,只要是有利于推广和应用的项目,不管是政府买单或是市场化,他们都会积极去做。为了拿出更加专业的精品,他们更以开放的姿态寻求跨界的合作企业和专家团队。“我们做技术的,做好技术,社会要发展,体制待改善,机会就有的。物联网数据要和同行业开放才会更有活力和竞争力,开放的意识形态才会造就开放的国家。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25