
[数据分析师]_大数据还有不少潜能
近两年来,大数据被公众广泛讨论,甚至成为不少商家宣传营销的卖点。毋庸置疑,智能设备的发展和普及,使海量的数据采集成为可能。但大数据并不是单纯的“数据大”,它更蕴含着一种计算和思维方式的转变,想要发挥出大数据的洞察力,还面临着采集、管理、分析数据的挑战。这些障碍如何破除?大数据在未来将如何应用,能否创造出更大的价值?这些问题值得我们在大数据热中,做出冷静判断。
4月26日,清华大学成立“清华—青岛数据科学研究院”,同时召开大数据时代高端论坛。就在此前两天,百度在第四届技术开放日上,正式宣布对外开放大数据引擎,提供大数据存储、分析及挖掘的技术能力。大数据被学界纳入研究范畴,商家开放引擎,这是否意味着大数据应用进入了一个新阶段?
传统统计方法追求精确,大数据只预测宏观趋势
本是技术概念的大数据,如今越来越像一种营销手段。从汽车、化妆品到体育,在营销人员口中,似乎所有行业都可以借助大数据,精确定位、找到消费者,预测趋势、赢得未来。
中国人民大学新闻学院教授喻国明认为,目前从国内的情况看,真正运用大数据分析成功的案例其实不多,很多公司都是将大数据作为一个营销噱头,所做的分析也主要是基于传统的数据分析方法。
事实上,对于数据多大能称之为“大数据”,业界并没有统一的认识,通常认为100TB太字节是大数据的门槛。简而言之,传统方法无法处理的数据即为大数据。
大数据的产生得益于移动互联网以及智能手机、各种智能穿戴产品的发展,人们行为、位置,甚至身体的生理特征等数据都可以便捷地被记录,这使海量数据采集成为可能。事实上,目前数据采集量正呈现快速的增长趋势。一家国际数据统计机构最新预测指出,2020年,全世界产生的数据量有望达到40ZB泽字节,1泽字节等于10亿太字节。
但大数据不能单纯理解为数据大。大数据研究专家、北京航空航天大学校长怀进鹏表示,大数据具有“规模大、变化快、种类杂、价值密度低”四个特征,是对传统计算和思维方式的一种挑战。
首先,因为几乎每个数据点都可以采集,全面数据代替了抽样、片面、局部的数据。“拿炒菜打比方,传统的抽样,我们需要在开始和中间时候‘尝一尝’,‘尝一尝’就是抽样数据,但在大数据时代,随机抽样的方式可能就失效了。”怀进鹏说。
怀进鹏认为,因为抽样分析时数据测量能力有限,统计追求的是精确,希望用最少数据获得最多的信息。而大数据比较杂乱,完整的精确不存在,也不再是追求的绝对目标,大数据只需对宏观趋势给出快速预测。
另一个改变是,从关注因果转向数据之间关联。在大数据时代,“数据背后的原因不再重要,人们只需要知道数据之间有统计相关性就行。仅需知其然,无需知其所以然。”怀进鹏说。
在大数据的支持者看来,数据已经能够自己说话,传统的科学统计模型已经过时,理论也可能被终结。
大数据营销大多是噱头,一些机构甚至无法收集海量数据
被誉为开大数据系统研究先河之作的《大数据时代》作者指出,大数据是社会的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得巨大价值的产品和服务,或深刻的洞见。
大数据蕴含的发现事实、挖掘价值、预测未来的洞察力,也是各色大数据营销的理论出发点。实际上,大数据洞察力确实在公共卫生、交通运输等行业开始发挥。
中国疾病预防控制中心副主任、中科院院士高福也认同大数据在公共卫生预防控制上的作用。他说,通过大数据,可以在流感到来之前为人们提供一些解释性信息,为流感的预防提供缓冲时间。
同样,在智能交通时代,海量车辆信息没法通过传统方式分析,但借助大数据,则可能提前预测未来的车流量、行进路线等信息,从而为改善城市交通状况提出优化方案。
然而,“自己能够讲话的大数据”,是否真如营销人员畅想得那么美好?
分析人士指出,数据存储和搬运虽然越来越便利,但目前大数据应用面临着数据收集,管理、分析海量数据并创造价值的挑战。
“如果将数据比作书,书增多后,首先要找到储存大数据的‘大图书馆’,下一步则要解决数据查询问题,没有好的查询引擎,书找不到,数据也就很难利用。” 百度大数据总监李钢江说。而现实是,大部分机构和企业都没有海量数据收集存储以及分析管理的能力。
业内人士指出,大数据在一些领域的营销还只是噱头,先不论大数据分析结果是否有效,有些行业连基本的大数据采集和管理条件还不具备,更谈不上精确定位和预测。
百度高级副总裁王劲也表示,传统的数据库没有管理大数据的能力,传统行业如何进入大数据时代,利用大数据价值,是摆在很多行业面前的新课题。
提升计算能力和降低云存储成本,将有利于大数据技术变革
百度首席执行官李彦宏认为,随着计算能力的提升和云存储等技术产品成本的不断降低,大数据走到了技术变革的临界点。不久前,百度就推出了“百度大数据引擎”,百度希望借助该工具,对大数据进行收集、存储、计算、挖掘和管理,并通过深度学习技术和数据建模技术,使数据具有“智能”的技术能力,服务传统行业。
据了解,百度大数据引擎包括开放云、数据工厂、百度大脑三大组件。其中,开放云解决的是数据存储和计算问题;“数据工厂”则对行业数据进行规范化处理,提供数据管理和分析;而“百度大脑”则让机器和人脑一样思考,分析处理数据。
不过,分析人士指出,虽然各方面为挖掘大数据开发了很多工具,但大数据的成熟应用还有很长一段时间。首先,数据杂乱,价值密度低,如何有效的收集数据信息仍没有成熟的方案。同时,数据的规模并不能决定一切,不论是那种数据分析方式,都可能存在统计上的缺陷,不能说数据更大、更新、更快就没有问题。
英特尔中国研究院首席工程师吴甘沙表示,大数据作为一种新的数据形态和实践,它将丰富数据应用方法,却不能取代传统统计分析方法,更不能神化大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18