
大数据虽然听得多,但真正是否用得放心还需检验,如果只是支持一个普通的App倒无妨,但如果让一个设备完全靠Big Data指挥,而我们自己的身家性命也与这个设备能否运转正常直接相关,这个意义就完全不同了。最近结束的Code Conference大会上除了公布互联网和智能手机用户增速在减缓以外,一个更值得讨论的问题也许是Google的无人驾驶汽车技术(Self- Driving)——没有方向盘、刹车和油门的汽车,但出于高可用考虑需要配备两套发动机,用户能控制的就是“开始/停止”按钮。
以目前25英里的时速,四个雷达以及监控路面情况、交通信号的相机产生的数据直观感觉似乎还不能称为“大”,但如果我们把驾车所需的各种知识,尤其 是面临紧急情况和其他不理性司机的处理逻辑进行分析,我们不难发现无人驾驶其实本身就是一个数据处理巨量的算法库,而且如果真的如Google所希望的, 能够在未来1~3年让这样的概念车实际开上加州道路,那么各种联网应用会接踵而至。类比一下如果我们现在使用手机是从App Store上下载一个App,对于Google汽车而言这意味着所有的逻辑和物理部件一定会随着各种App安装到汽车上,届时一辆汽车就好像一个移动的数 据中心,同时处理着结构化、非结构化的大量数据,相信以Google的喜好应该不会在其中再安装Oracle、DB2或者SQL Server,很多改造后的NoSQL技术应该是首选。
这个事物的意义与其他的Big Data技术完全不同,因为他需要在严格的时间内给出足够正确的响应,而且响应不是软件中简单返回一个True或False,它需要根据当时的路况、天气 等实际控制车辆的行驶。更为关键的是不管技术设计如何,务必要保证车内乘客的安全,因为这个过程没有办法回归。可能与“传统”电商用于分析用户行为的 Big Data不同,Google汽车不是把所有的数据倾倒在一个大湖里,然后通过对湖水的各种过滤获得某种需要的成分。Google汽车的运营机构可能需要这 样的“传统”Big Data应用,但对于一辆会从25英里时速逐步加速的技术,他要处理的是一个连续的数据流和连续的响应。每一个数据进入后必须快速分配到不同的计算部件处 理,并将结果及时反馈到不同逻辑或物理部件执行。另外,如果离开技术从法律角度考虑,这也是完全不同的。如果说一个电商的Big Data推销结果出错了,那么顶多就是损失用户可能光顾某个(或某类)商品的一次机会,但如果Google汽车上的程序故障导致车内的乘客出现不好的情 况,那就要对计算结果进行严格的审计和确认。因此车上除了灭火器、三角警示牌以外,一个黑匣子可能也必不可少,毕竟它要说清楚每个部件都在干什么、产生什 么计算结果、哪个结果的错误导致当前不好情况的发生。
Big Data不再是技术人员手中的玩物,它已经从幕后走向前台、从少数个别电商走向各类尤其是包括企业应用在内的传统IT系统。但 它的发展速度客观而言还有很大上升空间,毕竟以前Big Data更多是某个电商或者企业敝帚自珍的App,但将Big Data用于实际的道路环境,这就意味着不同的Big Data应用之间相互直接竞争的时代来到了。人类技术历史似乎偶尔会出现某种跳跃,以Google汽车为例,虽然它解决的是日常最经常用的交通工具——汽 车,但事实上20世纪人类已经将各种无人驾驶的火箭、卫星送入太空。一旦Big Data真正用于汽车(以后还可能用于轮船、战斗机等),必会将激烈的市场竞争直接引进到Big Data的应用范畴。
我很期待某一天能看到两个不同Big Data应用驱动的无人驾驶汽车在相互超车。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01