京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据虽然听得多,但真正是否用得放心还需检验,如果只是支持一个普通的App倒无妨,但如果让一个设备完全靠Big Data指挥,而我们自己的身家性命也与这个设备能否运转正常直接相关,这个意义就完全不同了。最近结束的Code Conference大会上除了公布互联网和智能手机用户增速在减缓以外,一个更值得讨论的问题也许是Google的无人驾驶汽车技术(Self- Driving)——没有方向盘、刹车和油门的汽车,但出于高可用考虑需要配备两套发动机,用户能控制的就是“开始/停止”按钮。
以目前25英里的时速,四个雷达以及监控路面情况、交通信号的相机产生的数据直观感觉似乎还不能称为“大”,但如果我们把驾车所需的各种知识,尤其 是面临紧急情况和其他不理性司机的处理逻辑进行分析,我们不难发现无人驾驶其实本身就是一个数据处理巨量的算法库,而且如果真的如Google所希望的, 能够在未来1~3年让这样的概念车实际开上加州道路,那么各种联网应用会接踵而至。类比一下如果我们现在使用手机是从App Store上下载一个App,对于Google汽车而言这意味着所有的逻辑和物理部件一定会随着各种App安装到汽车上,届时一辆汽车就好像一个移动的数 据中心,同时处理着结构化、非结构化的大量数据,相信以Google的喜好应该不会在其中再安装Oracle、DB2或者SQL Server,很多改造后的NoSQL技术应该是首选。
这个事物的意义与其他的Big Data技术完全不同,因为他需要在严格的时间内给出足够正确的响应,而且响应不是软件中简单返回一个True或False,它需要根据当时的路况、天气 等实际控制车辆的行驶。更为关键的是不管技术设计如何,务必要保证车内乘客的安全,因为这个过程没有办法回归。可能与“传统”电商用于分析用户行为的 Big Data不同,Google汽车不是把所有的数据倾倒在一个大湖里,然后通过对湖水的各种过滤获得某种需要的成分。Google汽车的运营机构可能需要这 样的“传统”Big Data应用,但对于一辆会从25英里时速逐步加速的技术,他要处理的是一个连续的数据流和连续的响应。每一个数据进入后必须快速分配到不同的计算部件处 理,并将结果及时反馈到不同逻辑或物理部件执行。另外,如果离开技术从法律角度考虑,这也是完全不同的。如果说一个电商的Big Data推销结果出错了,那么顶多就是损失用户可能光顾某个(或某类)商品的一次机会,但如果Google汽车上的程序故障导致车内的乘客出现不好的情 况,那就要对计算结果进行严格的审计和确认。因此车上除了灭火器、三角警示牌以外,一个黑匣子可能也必不可少,毕竟它要说清楚每个部件都在干什么、产生什 么计算结果、哪个结果的错误导致当前不好情况的发生。
Big Data不再是技术人员手中的玩物,它已经从幕后走向前台、从少数个别电商走向各类尤其是包括企业应用在内的传统IT系统。但 它的发展速度客观而言还有很大上升空间,毕竟以前Big Data更多是某个电商或者企业敝帚自珍的App,但将Big Data用于实际的道路环境,这就意味着不同的Big Data应用之间相互直接竞争的时代来到了。人类技术历史似乎偶尔会出现某种跳跃,以Google汽车为例,虽然它解决的是日常最经常用的交通工具——汽 车,但事实上20世纪人类已经将各种无人驾驶的火箭、卫星送入太空。一旦Big Data真正用于汽车(以后还可能用于轮船、战斗机等),必会将激烈的市场竞争直接引进到Big Data的应用范畴。
我很期待某一天能看到两个不同Big Data应用驱动的无人驾驶汽车在相互超车。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01