京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据虽然听得多,但真正是否用得放心还需检验,如果只是支持一个普通的App倒无妨,但如果让一个设备完全靠Big Data指挥,而我们自己的身家性命也与这个设备能否运转正常直接相关,这个意义就完全不同了。最近结束的Code Conference大会上除了公布互联网和智能手机用户增速在减缓以外,一个更值得讨论的问题也许是Google的无人驾驶汽车技术(Self- Driving)——没有方向盘、刹车和油门的汽车,但出于高可用考虑需要配备两套发动机,用户能控制的就是“开始/停止”按钮。
以目前25英里的时速,四个雷达以及监控路面情况、交通信号的相机产生的数据直观感觉似乎还不能称为“大”,但如果我们把驾车所需的各种知识,尤其 是面临紧急情况和其他不理性司机的处理逻辑进行分析,我们不难发现无人驾驶其实本身就是一个数据处理巨量的算法库,而且如果真的如Google所希望的, 能够在未来1~3年让这样的概念车实际开上加州道路,那么各种联网应用会接踵而至。类比一下如果我们现在使用手机是从App Store上下载一个App,对于Google汽车而言这意味着所有的逻辑和物理部件一定会随着各种App安装到汽车上,届时一辆汽车就好像一个移动的数 据中心,同时处理着结构化、非结构化的大量数据,相信以Google的喜好应该不会在其中再安装Oracle、DB2或者SQL Server,很多改造后的NoSQL技术应该是首选。
这个事物的意义与其他的Big Data技术完全不同,因为他需要在严格的时间内给出足够正确的响应,而且响应不是软件中简单返回一个True或False,它需要根据当时的路况、天气 等实际控制车辆的行驶。更为关键的是不管技术设计如何,务必要保证车内乘客的安全,因为这个过程没有办法回归。可能与“传统”电商用于分析用户行为的 Big Data不同,Google汽车不是把所有的数据倾倒在一个大湖里,然后通过对湖水的各种过滤获得某种需要的成分。Google汽车的运营机构可能需要这 样的“传统”Big Data应用,但对于一辆会从25英里时速逐步加速的技术,他要处理的是一个连续的数据流和连续的响应。每一个数据进入后必须快速分配到不同的计算部件处 理,并将结果及时反馈到不同逻辑或物理部件执行。另外,如果离开技术从法律角度考虑,这也是完全不同的。如果说一个电商的Big Data推销结果出错了,那么顶多就是损失用户可能光顾某个(或某类)商品的一次机会,但如果Google汽车上的程序故障导致车内的乘客出现不好的情 况,那就要对计算结果进行严格的审计和确认。因此车上除了灭火器、三角警示牌以外,一个黑匣子可能也必不可少,毕竟它要说清楚每个部件都在干什么、产生什 么计算结果、哪个结果的错误导致当前不好情况的发生。
Big Data不再是技术人员手中的玩物,它已经从幕后走向前台、从少数个别电商走向各类尤其是包括企业应用在内的传统IT系统。但 它的发展速度客观而言还有很大上升空间,毕竟以前Big Data更多是某个电商或者企业敝帚自珍的App,但将Big Data用于实际的道路环境,这就意味着不同的Big Data应用之间相互直接竞争的时代来到了。人类技术历史似乎偶尔会出现某种跳跃,以Google汽车为例,虽然它解决的是日常最经常用的交通工具——汽 车,但事实上20世纪人类已经将各种无人驾驶的火箭、卫星送入太空。一旦Big Data真正用于汽车(以后还可能用于轮船、战斗机等),必会将激烈的市场竞争直接引进到Big Data的应用范畴。
我很期待某一天能看到两个不同Big Data应用驱动的无人驾驶汽车在相互超车。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03