京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不再是空中楼阁 未来生活既治病还防霾
大数据这词,我们并不陌生,它的本意是指从海量的数据中,发现有价值的规律,并为人们所用。比如说,前不久支付宝发布的用户“十年账单”,实际上就是一次大数据在商业领域的应用。
当然了,大数据不光只用在淘宝上,在生活中的方方面面都会涉及。今天,在北京举办了一场声势浩大的科技会议,全世界最顶级的大数据公司云集于此,一起分享大数据在现代生活中的各种应用。接下来,我们一起来听听中外企业对大数据的运用,到底达到了什么样的水平了?
首先来听听国外企业。wandisco是一家硅谷的创业公司,主要做医院大数据的信息整合,目前公司已在伦敦证交所上市,今年刚刚进入中国市场,总经理张涛告诉记者,在美国,他们公司做的大数据产品主要针对患者。比如说,有些患者的病容易复发,他们可以通过大数据,精准的预测患者何时复发。
张涛:比如说我们在美国的医院里面,已经做了一个完整地一体化电子病历和整体的大数据医疗行业应用,他们能够更好地预测病人的二次入院时间。以前病人可能在治疗之后,有一个问题是之后可能会复查,之后可能会复发,那我能不能预计一下哪些病人可能在哪些时候有高发的可能性,主动通知他们,而不要等他们发病以后再来。
张涛说,这款大数据应用,对于国内的医生很受用。为什么呢?因为国内的医生每天要看很多的病人,时间很紧张,很难对病人有一个细致的了解。而大数据的运用,则可以大大的提高诊疗效率。
张涛:医生也会更加舒服,因为他也会提前知道,我今天会有哪个病人会进来,这个病人他的上一次治疗在什么时候做的。他会有一个更完整的记录,而不会每一次都是单纯的谈话,这样会影响效果。而我们在美国做的这个案例,是所有的历史记录无论是详细的片子、治疗等等,无论是在这个医院,还是在其他医院,都整合在一个医院里,全部电子化。所以病人不需要出具任何的东西,医生已经全有你的档案,甚至可能是在你来的前一天医生都已经看过了,这样整个效率都得到了提升。
大数据是行业趋势,不光是国外企业,国内企业也相当重视。在今天的会场上,记者还遇到了专做大数据可视化系统的数字冰雹信息公司总经理邓潇。当着记者的面,邓潇演示了他们的可视化系统,通过环保部的公开数据,把全国100多个重点城市的污染情况在屏幕上有了非常直接的呈现。
邓潇:做数据可视化的话,最主要的价值是帮助人们整体把握和驾驭这种大规模的数据。你现在看到的北京市从“优”“良”“轻度污染”“中度污染”“严重污染”全都有,只有“严重污染”的均值略低过全国的所有城市。所以说非常简单的数据可以让你得出非常非常多的结论。然后可以让你按照不同的维度,并且按照不同的指标,跨纬度,跨指标。分析其中的关系并且做出判断。
尽管大数据广泛运用于生活中的方方面面,能够帮助我们寻找到数字背后的规律。但也有专业人士提醒我们,大数据是一把双刃剑,如果管理不慎,它可能会泄露我们的隐私。启明星辰公司副总裁潘柱廷:
来潘柱廷:举个例子说,大家可能会把自己喜欢的照片晒到网上去。比如说孝做了什么活动,幼儿园怎么样。他其实完全可以把你孝是在哪个幼儿园,他现在几岁,他老师叫什么,你家长是什么名字,你家长是什么工作的。那这些是有一定的危险性的。所以我们尽量不要晒未成年尤其是孝的内容。
在今天的会场上,来自美国卡内基梅隆大学计算机技术教授邢波谈到了一个话题:大数据产生了,有人收集了,但他们会互相分享吗?如果不分享,这些大数据还能起到该有的作用吗?
邢波透露,在美国对于大数据的公开标准,有一个严格的界定。
邢波: 一种是所谓的社会知情权,对政府的一些决策、一些经济数据是不是要公布涉及到安全问题;另一种是为了科学使用这样的大数据,用户的数据、科学数据、天文望远镜照了很多星星的照片、或者生物里面很多DNA的生物的数据,在美国我想他是有一个严格界定的。凡是你用公共部门产生的数据,你有义务把他公布,政府也会提供资源让你去公布,比如有一个地方让你可以存、可以放。但是对于公司的话,他有时就要求公司有权利保护自己的数据。
同样的问题,在国内也存在。中国工程院院士李国杰说,院校的大数据研究要落后于企业,为啥?就是因为院校没有数据,而企业有数据;与此同时,国家很多数据也都不公开,导致无米下锅的状态。
李国杰:但是你要大家把希望都寄托在百度、腾讯这些大公司把数据公开,这个不现实。人家花钱的,人家建平台几十亿几十亿的建立,白干了,公司指着什么花呢。国外也不是这个样子的,公司有公开一些觉得对大家有帮助的触及科研工作,这个他可以做到。你让他把所有的东西都拿出来,那他赚什么钱,所以这些东西我们也没必要太苛求这些。
因此,中科院计算机所研究员程学旗建议,数据公开可以先在政府部门内部搞起来,但是目前,即便是各个部门之间,也都是有很多壁垒。比如智慧交通、智慧医疗的建设,如果有了部门间信息的共享,那效果会有很大改观。
程学旗:其实有很多,比如说我们这个智能交通的管理。第二如果我们把城市的一些数据比较好的关联起来,其实在上面做方法、做运用、做决策、甚至城市规划这块,其实我们可以很好地走近一步,但是恰恰在一个城市里面,各委办局,各个行业部门的数据就没办法把他整合在一起,一个目标驱动的情况下都很难做,这是我觉得大数据落地面临的第一个公职上的大的难点问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23