数据挖掘成果固化_聚类分析_数据分析师
--聚类样本数据模拟
--BY:@ETwise
--输入表1:cluster_sample
--输入表2:cluster_center
--20141213
create table cluster_sample
(
serv_id NUMBER ,
label_1 number,
label_2 number,
label_3 number,
label_4 number
);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (1,2,3,4,5);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (2,2.5,4.2,4.2,5.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (3,3.2,4.1,2.3,5.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (4,1.1,1.2,2.2,3.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (5,1.7,1.75,1.35,4.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (6,1.5,1.2,0.62,3.38);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (7,1.3,0.65,-0.11,3);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (8,1.1,0.1,-0.84,2.62);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (9,0.9,-0.45,-1.57,2.24);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (11,0.5,-1.55,-3.03,1.48);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (12,0.3,-2.1,-3.76,1.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (13,0.1,-2.65,-4.49,0.72);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (14,-0.1,-3.2,-5.22,0.34);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (15,-0.3,-3.75,-5.95,-0.04);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (16,-0.5,-4.3,-6.68,-0.42);
--创建聚类分析所得到的中心点数据
create table cluster_center
(
row_1 number,
row_2 number,
row_3 number,
row_4 number,
type_id VARCHAR2(20) not null
);
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (0,0,0,0,'t1');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (1,1,1,1,'t2');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (2,2,2,2,'t3');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (3,3,3,3,'t4');
--聚类分析成果系统固化相关说明(K-means)
--第一步:对计算每个点与各个中心点的距离,并对应得到相应的分类type_id
select serv_id,
sqrt(power((label_1 - row_1), 2) + power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) + power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b
;
--第二步:使用开窗函数对各serv_id的各个中心点的距离进行升序排序,并打上相应的编号
select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b)
;
--第三步:提取各个serv_id的最小距离数据,即可得到各个serv_id的类别
select *
from (select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b))
where myrow_1 = 1
;
--其他办法:一步到位,直接代入中心点进行计算
select serv_id,
case
when least(os1, os2, os3, os4) = os1 then
't1'
when least(os1, os2, os3, os4) = os2 then
't2'
when least(os1, os2, os3, os4) = os3 then
't3'
when least(os1, os2, os3, os4) = os4 then
't4'
else
'-1'
end type_id
from (select serv_id,
sqrt(power((label_1 - 0), 2) + power((label_2 - 0), 2) +
power((label_3 - 0), 2) + power((label_4 - 0), 2)) os1,
sqrt(power((label_1 - 1), 2) + power((label_2 - 1), 2) +
power((label_3 - 1), 2) + power((label_4 - 1), 2)) os2,
sqrt(power((label_1 - 2), 2) + power((label_2 - 2), 2) +
power((label_3 - 2), 2) + power((label_4 - 2), 2)) os3,
sqrt(power((label_1 - 3), 2) + power((label_2 - 3), 2) +
power((label_3 - 3), 2) + power((label_4 - 3), 2)) os4
from cluster_sample t)
;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03