京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘成果固化_聚类分析_数据分析师
--聚类样本数据模拟
--BY:@ETwise
--输入表1:cluster_sample
--输入表2:cluster_center
--20141213
create table cluster_sample
(
serv_id NUMBER ,
label_1 number,
label_2 number,
label_3 number,
label_4 number
);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (1,2,3,4,5);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (2,2.5,4.2,4.2,5.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (3,3.2,4.1,2.3,5.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (4,1.1,1.2,2.2,3.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (5,1.7,1.75,1.35,4.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (6,1.5,1.2,0.62,3.38);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (7,1.3,0.65,-0.11,3);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (8,1.1,0.1,-0.84,2.62);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (9,0.9,-0.45,-1.57,2.24);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (11,0.5,-1.55,-3.03,1.48);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (12,0.3,-2.1,-3.76,1.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (13,0.1,-2.65,-4.49,0.72);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (14,-0.1,-3.2,-5.22,0.34);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (15,-0.3,-3.75,-5.95,-0.04);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (16,-0.5,-4.3,-6.68,-0.42);
--创建聚类分析所得到的中心点数据
create table cluster_center
(
row_1 number,
row_2 number,
row_3 number,
row_4 number,
type_id VARCHAR2(20) not null
);
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (0,0,0,0,'t1');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (1,1,1,1,'t2');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (2,2,2,2,'t3');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (3,3,3,3,'t4');
--聚类分析成果系统固化相关说明(K-means)
--第一步:对计算每个点与各个中心点的距离,并对应得到相应的分类type_id
select serv_id,
sqrt(power((label_1 - row_1), 2) + power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) + power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b
;
--第二步:使用开窗函数对各serv_id的各个中心点的距离进行升序排序,并打上相应的编号
select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b)
;
--第三步:提取各个serv_id的最小距离数据,即可得到各个serv_id的类别
select *
from (select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b))
where myrow_1 = 1
;
--其他办法:一步到位,直接代入中心点进行计算
select serv_id,
case
when least(os1, os2, os3, os4) = os1 then
't1'
when least(os1, os2, os3, os4) = os2 then
't2'
when least(os1, os2, os3, os4) = os3 then
't3'
when least(os1, os2, os3, os4) = os4 then
't4'
else
'-1'
end type_id
from (select serv_id,
sqrt(power((label_1 - 0), 2) + power((label_2 - 0), 2) +
power((label_3 - 0), 2) + power((label_4 - 0), 2)) os1,
sqrt(power((label_1 - 1), 2) + power((label_2 - 1), 2) +
power((label_3 - 1), 2) + power((label_4 - 1), 2)) os2,
sqrt(power((label_1 - 2), 2) + power((label_2 - 2), 2) +
power((label_3 - 2), 2) + power((label_4 - 2), 2)) os3,
sqrt(power((label_1 - 3), 2) + power((label_2 - 3), 2) +
power((label_3 - 3), 2) + power((label_4 - 3), 2)) os4
from cluster_sample t)
;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16