京公网安备 11010802034615号
经营许可证编号:京B2-20210330
历史上的文学大数据分析_数据分析师
虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
2014年7/8月号的《美国科学家》杂志发表了Brian Hayes的文章《文学与大数据一相逢》。他说,虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
在计算机尚未问世时,英国统计学家G. Udny Yule和C.B. Williams就尝试过如何利用句长的差异来表征不同的文学风格,识别不同的作者。1964年,出现了史上第一个主题为“文学数据处理”的学术会议,参会者有150人,讨论题目包括“计算文体学”,还有在计算机辅助下就弥尔顿对雪莱之影响作出估计。更早的时候,Frederick Mosteller和David L. Wallace就曾对《联邦党人文集》中常见词的词频(例如also、an、by、of)进行统计分析,试图确定哪些文章是汉密尔顿写的,哪些文章是麦迪逊写的。
Brian Hayes特别想介绍的是19世纪美国的两位“数字人文学”先驱人物。一位叫Thomas Corwin Mendenhall(1841~1924),是科学家,曾任印第安纳州罗斯理工学院的院长、美国国家科学院院士和美国科学促进会会长。1887年,他在《科学》杂志发表一篇文章《文章的特征曲线》。他认为,正如光谱线的模式可以表明存在着某化学元素一样,通过“词谱”或“特征曲线”也能表征一篇文章。他以狄更斯的《雾都孤儿》和萨克雷的《名利场》为研究对象,看看两人的“词谱”差异大不大,结果发现,差异不足以区分开两个作者。
另一位先驱人物叫Lucius Adelno Sherman(1847~1933),他的博士论文题目是《古英语诗歌“猫头鹰与夜莺”的语法分析》,从中可以看出他喜欢定量研究。例如,他统计了这首诗歌中用了多少介词、连词和否定式表达。1893年,Sherman发表了一部著作《文学分析学:关于如何对英语散文与诗歌进行客观研究的手册》。《科学》杂志发表过一篇书评,称此书是“划时代”的作品。在书里,他想做的不仅仅是通过定量分析来区分作者,如Mendenhall所尝试过的,而且涉及更多内容。比如,他在讲授英语文学演变的过程中,注意到了一桩事实:从14世纪的诗人乔叟到17世纪的莎士比亚,再到19世纪的爱默生,文学家们写出的句子越来越简单,摆脱了过去那种“凝重”和繁复。他从每个作家的作品中抽取500个句子,统计其平均句长。16世纪初的Robert Fabyan平均句长为63个单词,19世纪的爱默生平均句长只有20.5个单词。
他在搜集基础数据方面是下了苦功夫的,比如某个暑假里,他花了三周的时间,从麦考莱的五卷本《英国史》中整理出了4万多个句子中的单词。当然,有学生给他帮忙,因为他是教授嘛。
按现在的标准来看,这些数字人文学的先驱所做的工作都很简单,也不是那么成功,但是其开拓之功是不容否认的。有先进信息技术的助力,相信21世纪的数字人文学研究一定能别开生面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06