
历史上的文学大数据分析_数据分析师
虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
2014年7/8月号的《美国科学家》杂志发表了Brian Hayes的文章《文学与大数据一相逢》。他说,虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
在计算机尚未问世时,英国统计学家G. Udny Yule和C.B. Williams就尝试过如何利用句长的差异来表征不同的文学风格,识别不同的作者。1964年,出现了史上第一个主题为“文学数据处理”的学术会议,参会者有150人,讨论题目包括“计算文体学”,还有在计算机辅助下就弥尔顿对雪莱之影响作出估计。更早的时候,Frederick Mosteller和David L. Wallace就曾对《联邦党人文集》中常见词的词频(例如also、an、by、of)进行统计分析,试图确定哪些文章是汉密尔顿写的,哪些文章是麦迪逊写的。
Brian Hayes特别想介绍的是19世纪美国的两位“数字人文学”先驱人物。一位叫Thomas Corwin Mendenhall(1841~1924),是科学家,曾任印第安纳州罗斯理工学院的院长、美国国家科学院院士和美国科学促进会会长。1887年,他在《科学》杂志发表一篇文章《文章的特征曲线》。他认为,正如光谱线的模式可以表明存在着某化学元素一样,通过“词谱”或“特征曲线”也能表征一篇文章。他以狄更斯的《雾都孤儿》和萨克雷的《名利场》为研究对象,看看两人的“词谱”差异大不大,结果发现,差异不足以区分开两个作者。
另一位先驱人物叫Lucius Adelno Sherman(1847~1933),他的博士论文题目是《古英语诗歌“猫头鹰与夜莺”的语法分析》,从中可以看出他喜欢定量研究。例如,他统计了这首诗歌中用了多少介词、连词和否定式表达。1893年,Sherman发表了一部著作《文学分析学:关于如何对英语散文与诗歌进行客观研究的手册》。《科学》杂志发表过一篇书评,称此书是“划时代”的作品。在书里,他想做的不仅仅是通过定量分析来区分作者,如Mendenhall所尝试过的,而且涉及更多内容。比如,他在讲授英语文学演变的过程中,注意到了一桩事实:从14世纪的诗人乔叟到17世纪的莎士比亚,再到19世纪的爱默生,文学家们写出的句子越来越简单,摆脱了过去那种“凝重”和繁复。他从每个作家的作品中抽取500个句子,统计其平均句长。16世纪初的Robert Fabyan平均句长为63个单词,19世纪的爱默生平均句长只有20.5个单词。
他在搜集基础数据方面是下了苦功夫的,比如某个暑假里,他花了三周的时间,从麦考莱的五卷本《英国史》中整理出了4万多个句子中的单词。当然,有学生给他帮忙,因为他是教授嘛。
按现在的标准来看,这些数字人文学的先驱所做的工作都很简单,也不是那么成功,但是其开拓之功是不容否认的。有先进信息技术的助力,相信21世纪的数字人文学研究一定能别开生面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23