京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据预测如何才能提高准确率_数据分析师
近来,有关大数据的讨论可谓是沸沸扬扬,在今年世界杯期间,百度、谷歌、微软和高盛等巨头曾利用大数据技术预测比赛结果,最终百度以100%准确率“夺冠”。不过,百度在9月底推出的电影票房预测首次试水却出现了一定的偏差,又引发了外界对大数据预测的质疑。
外界对大数据为何如此关注?首要原因在于,大数据预测可能会给某些人带来利益,比如使用大数据预测股票走势,如果这个准确率很高,那么自然会有更多股民去关注大数据。在世界杯期间,赌球的人不少,如果大数据可以对球赛做出精准的预测,那么在以后的重大体育赛事上,大数据也会扮演重要角色。
当然,除了这些层面之外,大数据还将为我们的生活带来非常直观的影响,比如通过大数据预测流行病,并对社会发出警示信号;又比如通过大数据统计和分析交通状况,为缓解城市拥挤献计献策等等。应该说,未来我们的生活将与大数据息息相关。
从百度的案例来看,我们显然已经对大数据预测有了一定的了解,不过,这其中的问题仍然值得我们思考,未来大数据应该从哪些方面提升准确率呢?
一方面,虽然大数据的应用范围越来越广,但并不是所有领域都存在大数据,也就是说,在某些方面,大数据的覆盖范围还没那么普遍,在这种情况下,可能会出现一些失真的情况。
另一方面,对大数据预测而言,模型非常重要,在今年巴西世界杯期间,百度、谷歌、微软和高盛等巨头对全部64场比赛的胜负结果,以及冠军和黑马进行了预测。然而,无论是四分之一决赛还是16强淘汰赛,百度预测结果准确率都达到100%,甚至比高盛和谷歌的精准度还要高出很多。究其原因在于几家巨头采用了不同的预测模型,才导致了预测结果相差甚远。
所以,未来大数据的发展将着眼于两点,第一点是推动大数据继续普及,造福社会;第二点是通过技术途径不断完善大数据模型,降低系统误差,提高准确率。
在这方面,国内互联网巨头百度做的相当不错。除了利用大数据对疾病和世界杯进行预测之外,百度还和联合国开发计划署合作,共建大数据联合实验室。据悉,该联合实验室的工作重点是利用百度的大数据技术对行业数据进行分析加工和趋势预测,为联合国制定发展策略提供建议,实验室现阶段的研究重点是环保和健康领域,未来还将聚焦教育和灾害管理等议题。
在这一合作中,百度将获得来自联合国开发计划署的海量数据,这些数据拥有极高的共识性和完整性,当然准确率也自然会得到大幅提升。当然,除了联合国开发计划署之外,越来越多的企业、机构也在和百度合作,共享大数据所带来的价值,而这也必将丰富百度的大数据库,为大数据预测提供更精准的数据素材。
另外,凭借百度在数据分析和数据处理方面的技术优势,未来在大数据模型方面也将会有重大突破。基于开放云、数据工厂、百度大脑等先进的武器,应该说,百度在大数据预测方面已经建立了一套完整的体系,通过体系的协同工作,百度也必将持续提升大数据预测的成功率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07