京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的结构和解构_数据分析师
很多人都知道,数字世界的发展和黑客非常有关系。比如微软的比尔·盖茨就做过黑客,最新的标志性人物Facebook的扎克伯格也干过这个事儿。Facebook早期的版本Facemash.com就偷偷地接入了哈佛大学的学生数据库,获取了学生证件照。扎克伯格让同学们根据这些照片投票选美,很是热闹了一阵子。
来自华中科技大学的几个学生也是很彻底地模仿了扎克伯格一回:他们设置了一个名为hust-facemash.com的网站,同样是偷偷摸摸地侵入学校的HUB(华中科技大学公共信息服务平台),把一大堆的女同学照片放到网上让人“选美”。与当年的Facemash所引发的舆论抨击一样,华中科大的这个Facemash同样引来了不少的担忧和批评。
核心问题就是“隐私”。担忧者认为,在学生档案里,不仅有照片,还有各种其他信息,比如电话住址之类。今天这个Facemash只是公布了照片,但其他信息在这些年轻人侵入系统后必然被一览无遗。这又怎不让人担心呢?而那几个学生声称,他们做这个东西的动机只是想提醒一下校方:嘿,你们的网络系统安全弱爆了!
动机论是很不靠谱的,因为谁也不知道他们在倒腾这玩意儿时究竟是抱着善意提醒的目的呢,还是恶搞玩上一玩,抑或想成为中国的扎克伯格?但结果是很明显的,不仅侵犯到了人家的隐私,而且对那些女孩来讲,自家照片在自家从未首肯的情况下被别人拿去和其他女孩子放在一起评头论足,总不是件令人愉快的事。
如果说中外两个Facemash的后果还不算太严重的话,那么,另外几起用户数据库被侵入就很严重了。韩国最大的社交网站Cyworld遭入侵,成为韩国取消实名制的动因之一。不久前,美国最大的职业社交网站Linkedin遭入侵,600万用户密码被公布在一个论坛上。中国亦有类似事件,据称波及千万用户之巨。我们把很多东西放在网上,而这些东西的安全性,看来很值得担忧。
这已经不再是隐私那么简单了。数字经济的高速发展,使得很多事的效率都在提高,当然也会带来一些负面效应。而在这诸多负面效应中,在我看来,最大的莫过于,其实系统是很脆弱的。
我们必须承认,依托于网络,每个人之间的“距离”变得更近了,我们越来越成其为一个整体。但重点就是这个“依托网络”。服务器记载着我们太多的东西,这个整体变得越来越结构化,只要攻破其中一点,其整体就会出现剧烈的动荡,受侵害人口动辄数十乃至数百万。过去的一个银行体系的被侵入和今天(假定的)Facebook被侵入,后果简直是天壤之别。
互联网诞生之初,走的就是“去中心化”道路,免费的网络服务器系统阿帕奇的构想,就是在美国遭受斩首式攻击时,有其他节点可以迅速补上成为中心控制。但这个互联网从web1.0、web2.0一路走来,进入大数据时代后,大量的用户数据被储存在服务器端。是的,节点越来越趋去中心化,但数据却越来越中心化。我们已经“让渡”了一些很重要的东西给机器,但机器,却并不牢靠。
加强安全性是一个方法。但正如福尔摩斯的创造者柯南道尔在《跳舞的小人》里写道:有人发明,就有人看懂。再强的安全体系,都有被侵入的可能。而之所以很多看似松松垮垮的系统没有被侵入的原因其实很简单:不值得。解密是有成本的,但如果标的物诱惑足够,成本便会相对变得小很多。又有什么样的系统是100%的安全呢。数据越来越集中化,使得这个标的物的诱惑,变得越来越大。
加强对黑客行为的处罚也是一个方法。华中科技大学的那几个学生会面临什么样的惩处尚不知晓,扎克伯格可是因为Facemash领了哈佛的留校察看处分的。一些后果并不严重的行为,小小惩戒一下即可。但类似Cyworld和Linkedin的被入侵,一个警告是完全没有用的。
不过,话也要说回来。数据集中化加强了整个社会的结构化,体系会变得越来越有利于既得利益者、掌权者和有钱人。漏洞的存在,对当事人是一种不幸,但对整个社会而言,或许又是一种不幸中的大幸:反抗成为一种可能。哈维尔所谓“无权势者的权力”,在今天这个社会,大抵就会具象成如此吧。
波澜壮阔的基于数据的结构和反抗(或又可称之为解构)在大数据时代已经悄然登场。人类社会,终归是在矛盾中一路前行的。但这种结构或者反抗,最终是否会彻底失控,谁也不知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29