
大数据时代的结构和解构_数据分析师
很多人都知道,数字世界的发展和黑客非常有关系。比如微软的比尔·盖茨就做过黑客,最新的标志性人物Facebook的扎克伯格也干过这个事儿。Facebook早期的版本Facemash.com就偷偷地接入了哈佛大学的学生数据库,获取了学生证件照。扎克伯格让同学们根据这些照片投票选美,很是热闹了一阵子。
来自华中科技大学的几个学生也是很彻底地模仿了扎克伯格一回:他们设置了一个名为hust-facemash.com的网站,同样是偷偷摸摸地侵入学校的HUB(华中科技大学公共信息服务平台),把一大堆的女同学照片放到网上让人“选美”。与当年的Facemash所引发的舆论抨击一样,华中科大的这个Facemash同样引来了不少的担忧和批评。
核心问题就是“隐私”。担忧者认为,在学生档案里,不仅有照片,还有各种其他信息,比如电话住址之类。今天这个Facemash只是公布了照片,但其他信息在这些年轻人侵入系统后必然被一览无遗。这又怎不让人担心呢?而那几个学生声称,他们做这个东西的动机只是想提醒一下校方:嘿,你们的网络系统安全弱爆了!
动机论是很不靠谱的,因为谁也不知道他们在倒腾这玩意儿时究竟是抱着善意提醒的目的呢,还是恶搞玩上一玩,抑或想成为中国的扎克伯格?但结果是很明显的,不仅侵犯到了人家的隐私,而且对那些女孩来讲,自家照片在自家从未首肯的情况下被别人拿去和其他女孩子放在一起评头论足,总不是件令人愉快的事。
如果说中外两个Facemash的后果还不算太严重的话,那么,另外几起用户数据库被侵入就很严重了。韩国最大的社交网站Cyworld遭入侵,成为韩国取消实名制的动因之一。不久前,美国最大的职业社交网站Linkedin遭入侵,600万用户密码被公布在一个论坛上。中国亦有类似事件,据称波及千万用户之巨。我们把很多东西放在网上,而这些东西的安全性,看来很值得担忧。
这已经不再是隐私那么简单了。数字经济的高速发展,使得很多事的效率都在提高,当然也会带来一些负面效应。而在这诸多负面效应中,在我看来,最大的莫过于,其实系统是很脆弱的。
我们必须承认,依托于网络,每个人之间的“距离”变得更近了,我们越来越成其为一个整体。但重点就是这个“依托网络”。服务器记载着我们太多的东西,这个整体变得越来越结构化,只要攻破其中一点,其整体就会出现剧烈的动荡,受侵害人口动辄数十乃至数百万。过去的一个银行体系的被侵入和今天(假定的)Facebook被侵入,后果简直是天壤之别。
互联网诞生之初,走的就是“去中心化”道路,免费的网络服务器系统阿帕奇的构想,就是在美国遭受斩首式攻击时,有其他节点可以迅速补上成为中心控制。但这个互联网从web1.0、web2.0一路走来,进入大数据时代后,大量的用户数据被储存在服务器端。是的,节点越来越趋去中心化,但数据却越来越中心化。我们已经“让渡”了一些很重要的东西给机器,但机器,却并不牢靠。
加强安全性是一个方法。但正如福尔摩斯的创造者柯南道尔在《跳舞的小人》里写道:有人发明,就有人看懂。再强的安全体系,都有被侵入的可能。而之所以很多看似松松垮垮的系统没有被侵入的原因其实很简单:不值得。解密是有成本的,但如果标的物诱惑足够,成本便会相对变得小很多。又有什么样的系统是100%的安全呢。数据越来越集中化,使得这个标的物的诱惑,变得越来越大。
加强对黑客行为的处罚也是一个方法。华中科技大学的那几个学生会面临什么样的惩处尚不知晓,扎克伯格可是因为Facemash领了哈佛的留校察看处分的。一些后果并不严重的行为,小小惩戒一下即可。但类似Cyworld和Linkedin的被入侵,一个警告是完全没有用的。
不过,话也要说回来。数据集中化加强了整个社会的结构化,体系会变得越来越有利于既得利益者、掌权者和有钱人。漏洞的存在,对当事人是一种不幸,但对整个社会而言,或许又是一种不幸中的大幸:反抗成为一种可能。哈维尔所谓“无权势者的权力”,在今天这个社会,大抵就会具象成如此吧。
波澜壮阔的基于数据的结构和反抗(或又可称之为解构)在大数据时代已经悄然登场。人类社会,终归是在矛盾中一路前行的。但这种结构或者反抗,最终是否会彻底失控,谁也不知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26