
通过大数据看影视剧网络营销怎么做_数据分析师
我们根据上述腾讯空间数据分析报告来总结几个结论,影视剧在网络媒体上传播特征或者关键点是什么?
这份报告通过腾讯空间对近期15部电影积累的数据,给出了7点结论:
√ 一部电影在QQ空间里的讨论次数与票房成正比
√ 不同地区群体对不同电影的喜好有区别
√ 独自看、结伴看与电影题材有关
√ 学历高低影响电影喜好
√ 性别与电影喜好有关
√ 年龄与电影喜好有关
√ 口碑效应:再低调也会影响98个小伙伴
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
在后续分析的时候,我发现这份报告忽略了一个比较重要的数据:数据的时间点。例如冯小刚喜欢拍贺岁片,其定位与传播必然有特殊性。
为了得到更有价值的结论,我们首先要将这些数据信息重新归类。从媒体营销的角度,我们可以将上述信息归纳为3个类别:
1、定位: 包含这些元素:
√ 不同地区群体对不同电影的喜好有区别
√ 独自看、结伴看与电影题材有关
√ 学历高低影响电影喜好
√ 性别与电影喜好有关
√ 年龄与电影喜好有关
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
2、传播 包含如下元素:
√ 口碑效应:再低调也会影响98个小伙伴
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
3、数据指标 包含一个元素:
一部电影在QQ空间里的讨论次数与票房成正比
其次,我们根据上述腾讯空间数据分析报告来总结几个结论,影视剧在网络媒体上传播特征或者关键点是什么?
1、我们发现场景分析是媒体数据营销的重要手法。这份报告之所以从年龄、性别、地区、是否结对等数据维度取样,就是应用了场景分析的方式。不仅数据分析需呀场景分析,数据应用也需要这样的手法。
2、网络媒体的传播离不开社会化。“口碑效应:再低调也会影响98个小伙伴”就是最直接的数据结论。因此在传播中我们必须着重考虑:谁向谁传播?什么群体更容易主动发起传播?谁最容易接收数据?
3、数字化评估是新媒体传播的最关键优势,可是实现数字评估我们必须做两件事:建立评估数据模型、建立评估数据库。
下面我们一起探讨如何应用大数据来实施影视剧的媒体营销。
第一步:确定人群定位。
过去,定位都是制片人或者导演自说自话的东西,例如“这部电影面向XXX人群”。在大数据面前,营销者必须进行一个革命性的改进——数字说话。我们来看大数据给我们带来了什么好处:
1、类似题材的数据参考。例如《蜘蛛侠N》和《蜘蛛侠N+1》的营销推广,前一部的精准数字积累价值太高了。无论数据还是策略,数据参考都远比人的猜测更有价值。
2、人群定位分析。过去大数据常常仅限于数据统计,或者说事后诸葛亮。从腾讯空间的这份报告可以看出,你可以用大数据去预判很多。每一部大片上市之前,都有花絮、传闻、剧情等信息事先释放和预热。我们完全可以利用预热阶段的空间热度去判断关注者的年龄、性别、职业、地区、学历等信息。
3、人群热度预测。每一部大片预热期的表现会大大影响最终票房结果,那么预热期的历史数据是可以参考的。对预热期腾讯空间、百度指数等数据的监测,可以为广告投放力度、地区投放、人群定向投放等提供数字依据。
第二步:确定传播计划。
在传播阶段,有2个很重要的概念:
其一,媒体营销,社会化越来越重要,而社会化的核心是种子群体的选择,或者说意见领袖的选择;
其二,活动营销即是精准数据的过滤器又是精准数据的催化剂。 我们看到腾讯空间的这份报告用这些标签来确定种子用户:年龄、性别、学历、地区、是否结对、相关性。
定位可以确定传播策略,也就是我曾经指出的三大环节:创意、渠道、方法。有如下细节:
√ 选取意见领袖。相关性可以评估代言人,从定位群体的相关性我们可以用大数据来决定请谁做代言人!相关性确定传播渠道,每一类人习惯的获取信息的渠道是不同的。根据年龄、学历、地区、性别确定第一轮落点。
√ 选择传播方式。例如报告结论有一段——结对与否确定向闺蜜传播还是向男朋友传播。也就是用大数据做依据来确定具体传播渠道。
√ 设计相关活动。不同定位人群喜好的活动是有定式的!
第三步:大数据指导下的实施过程。 该过程是这样的:第一轮传播——>过滤出下一级关键传播点——>再次传播——>传播评估与调整——>数据积累与转化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19