京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过大数据看影视剧网络营销怎么做_数据分析师
我们根据上述腾讯空间数据分析报告来总结几个结论,影视剧在网络媒体上传播特征或者关键点是什么?
这份报告通过腾讯空间对近期15部电影积累的数据,给出了7点结论:
√ 一部电影在QQ空间里的讨论次数与票房成正比
√ 不同地区群体对不同电影的喜好有区别
√ 独自看、结伴看与电影题材有关
√ 学历高低影响电影喜好
√ 性别与电影喜好有关
√ 年龄与电影喜好有关
√ 口碑效应:再低调也会影响98个小伙伴
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
在后续分析的时候,我发现这份报告忽略了一个比较重要的数据:数据的时间点。例如冯小刚喜欢拍贺岁片,其定位与传播必然有特殊性。
为了得到更有价值的结论,我们首先要将这些数据信息重新归类。从媒体营销的角度,我们可以将上述信息归纳为3个类别:
1、定位: 包含这些元素:
√ 不同地区群体对不同电影的喜好有区别
√ 独自看、结伴看与电影题材有关
√ 学历高低影响电影喜好
√ 性别与电影喜好有关
√ 年龄与电影喜好有关
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
2、传播 包含如下元素:
√ 口碑效应:再低调也会影响98个小伙伴
√ 物以类聚,人以群分——电影与一些人物或者产品具有关联
3、数据指标 包含一个元素:
一部电影在QQ空间里的讨论次数与票房成正比
其次,我们根据上述腾讯空间数据分析报告来总结几个结论,影视剧在网络媒体上传播特征或者关键点是什么?
1、我们发现场景分析是媒体数据营销的重要手法。这份报告之所以从年龄、性别、地区、是否结对等数据维度取样,就是应用了场景分析的方式。不仅数据分析需呀场景分析,数据应用也需要这样的手法。
2、网络媒体的传播离不开社会化。“口碑效应:再低调也会影响98个小伙伴”就是最直接的数据结论。因此在传播中我们必须着重考虑:谁向谁传播?什么群体更容易主动发起传播?谁最容易接收数据?
3、数字化评估是新媒体传播的最关键优势,可是实现数字评估我们必须做两件事:建立评估数据模型、建立评估数据库。
下面我们一起探讨如何应用大数据来实施影视剧的媒体营销。
第一步:确定人群定位。
过去,定位都是制片人或者导演自说自话的东西,例如“这部电影面向XXX人群”。在大数据面前,营销者必须进行一个革命性的改进——数字说话。我们来看大数据给我们带来了什么好处:
1、类似题材的数据参考。例如《蜘蛛侠N》和《蜘蛛侠N+1》的营销推广,前一部的精准数字积累价值太高了。无论数据还是策略,数据参考都远比人的猜测更有价值。
2、人群定位分析。过去大数据常常仅限于数据统计,或者说事后诸葛亮。从腾讯空间的这份报告可以看出,你可以用大数据去预判很多。每一部大片上市之前,都有花絮、传闻、剧情等信息事先释放和预热。我们完全可以利用预热阶段的空间热度去判断关注者的年龄、性别、职业、地区、学历等信息。
3、人群热度预测。每一部大片预热期的表现会大大影响最终票房结果,那么预热期的历史数据是可以参考的。对预热期腾讯空间、百度指数等数据的监测,可以为广告投放力度、地区投放、人群定向投放等提供数字依据。
第二步:确定传播计划。
在传播阶段,有2个很重要的概念:
其一,媒体营销,社会化越来越重要,而社会化的核心是种子群体的选择,或者说意见领袖的选择;
其二,活动营销即是精准数据的过滤器又是精准数据的催化剂。 我们看到腾讯空间的这份报告用这些标签来确定种子用户:年龄、性别、学历、地区、是否结对、相关性。
定位可以确定传播策略,也就是我曾经指出的三大环节:创意、渠道、方法。有如下细节:
√ 选取意见领袖。相关性可以评估代言人,从定位群体的相关性我们可以用大数据来决定请谁做代言人!相关性确定传播渠道,每一类人习惯的获取信息的渠道是不同的。根据年龄、学历、地区、性别确定第一轮落点。
√ 选择传播方式。例如报告结论有一段——结对与否确定向闺蜜传播还是向男朋友传播。也就是用大数据做依据来确定具体传播渠道。
√ 设计相关活动。不同定位人群喜好的活动是有定式的!
第三步:大数据指导下的实施过程。 该过程是这样的:第一轮传播——>过滤出下一级关键传播点——>再次传播——>传播评估与调整——>数据积累与转化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05