
spss的数据分析报告_spss的数据分析实例_spss的数据分析(1)_数据分析师
关于某公司 474 名职工综合状况的统计分析报告 一、数据介绍: 本次分析的数据为某公司 474 名职工状况统计表, 其中共包含十一变量, 分别是: (职 id 工编号) gender(性别), , bdate(出生日期), (受教育水平程度) jobcat edcu , (职务等级) salbegin , (起始工资) salary , (现工资) jobtime(本单位工作经历<月>), , prevexp(以前工作经历<月>), minority(民族类型),age(年龄)。通过运用 spss 统计软件,对变量进行频数分析、描述性统 计、方差分析、相关分析、。 。。以了解该公司职工上述方面的综合状况,并分析个变量的分 布特点及相互间的关系。 二、数据分析 1、 频数分析。基本的统计分析往往从频数分析开始。通过频数分析能够了解变量的取值状 况,对把握数据的分布特征非常有用。此次分析利用了某公司 474 名职工基本状况的统 计数据表,在 gender(性别)、edcu(受教育水平程度) 、不同的状况下的频数分析,从而 了解该公司职工的男女职工数量、受教育状况的基本分布。
Statistics Educational Gender N Valid Missing 474 0 Level (years) 474 0
首先,对该公司的男女性别分布进行频数分析,结果如下:
Gender Cumulative Frequency Valid Female Male Total 216 258 474 Percent 45.6 54.4 100.0 Valid Percent 45.6 54.4 100.0 Percent 45.6 100.0
上表说明,在该公司的474名职工中,有216名女性, 258名男性, 男女比例分别为45.6% 和54.4%,该公司职工男女数量差距不大,男性略多于女性。 其次对原有数据中的受教育程度进行频数分析,结果如下表 :
Educational Level (years) Cumulative Frequency Valid 8 12 14 15 16 17 18 19 20 21 Total 53 190 6 116 59 11 9 27 2 1 474 Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Valid Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Percent 11.2 51.3 52.5 77.0 89.5 91.8 93.7 99.4 99.8 100.0
1
Histogram
200
150
Frequency
100
50
0 7. 5 10 12. 5 15 17. 5 20 22. 5
M ean = 13. 49 St d. D ev. = 2. 885 N = 474
E ducational Level (years)
上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为 190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。且接受过高于 20年的教育的人数只有1人,比例很低。 2、 描述统计分析。再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分 布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算 基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、 标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。 Descriptive Ststistics N Minimu m Maximu m Mean Std. Deviation Skewness Kurtosis
Sta文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29