
大数据时代的治理智慧_数据分析师
人类已经进入大数据时代。如果说计算机的普及仅仅解决了信息的可读化、可计算化问题,互联网解决了信息传递和服务问题,那么,大数据则解决了信息的分析和预测问题,大数据助力决策科学化,公共服务个性化、精准化。实践表明,大数据具有大容量、多样性、快速度、真实性等多种特征。利用数据融合、数学模型、仿真技术等,可以大大推动政府决策的科学性,甚至“揭示出原来没有想到或难以展现的关联”。全新的思维方式和行为方式,将带来全新的商业模式和发展路径。大数据带来的改变不仅使传统的思维方式和行为方式将面临巨大挑战,而且在公共服务领域,它有效集成信息资源的能力,将会为政府管理理念和治理模式的转变,提供强大的技术支撑。
政府作为大数据的最大占有者和最大消费者,必须在大数据管理和应用方面先行一步。美国等发达国家已经在政府管理方面取得了可喜成果。在公共管理领域,国内外一些先行者已经在运用大数据,通过多渠道采集数据、处理数据,增强了社会治理能力,实现了政府公共服务的技术创新、管理创新和服务模式创新。实现信息透明和共享,使外部利益相关者和内部利益相关者都能提高自身的工作效率,产生经济的经济效益和社会综合效益。通过评估公共部门的绩效,增强内部竞争,激励工作表现,提高公共建设效率,提升行政服务质量,降低政府管理成本。通过人口细分和定制政策,增强公共服务的针对性,提高工作效率和公众满意度。用政务智能代替或辅助人工决策,减少出错成本和福利管理中的诈骗。引导公共部门内部的创新,通过大数据工具和分析,对公共服务进行反馈,改善现有的方案,为公共部门创造新价值。
大数据在当代社会的作用是多方面的。大数据分析能去伪存真,用在公共服务领域可起到事半功倍的效果。通过大数据能够建立快速反应的公共安全管理系统、数据化调控过的公共交通系统、以人为本的综合社会管理系统、智慧预测下的公共卫生与医疗系统、创意与实用兼备的环境保护系统,还能够推进智慧城市的生长,让城市生活更美好。大数据之所以能够发挥如此巨大的作用,主要在于其多渠道的数据采集、高度开放的数据系统、精准识别的数据处理等关键技术。尤其是在智慧城市建设中,物联网是智慧城市的感觉器官,移动互联网是编织城市数据网的脉搏,云计算为城市各个单元之间协调行动、政府与公众之间有效合作提供了基础。当然,大数据也不是万能的。制约大数据发挥作用的因素主要的还不是技术问题,而是政府统筹管理的能力、制度建设,以及政府与社会公众的沟通协调等各个方面。因此,信息要实现共享融合,必须打破部门分割,建立以市场为主导的政府数据资源运行机制。以产业化、市场化为方向,打破数据垄断,建立以市场为主导的政府数据资源运行机制,按市场规律和风险等级分级开放政府数据资源,授权和鼓励第三方参与政府数据资源开发,并向市场购买社会数据及服务,鼓励基于大数据的服务和运营模式创新。
大数据固然能够成就人类的伟大梦想,为中国梦的实现增添一臂之力,但是,我们也应该看到我们在大数据面前必须应对各种前所未有的挑战。首先是数据质量问题。数据造假威胁数据质量的生命线,错误发现使数据的解读和呈现都出现致命的谬误,数据盲点导致了信息时代的信息缺席。其次是信息安全问题。信息社会的每一个人、每一个政党、每一个国家,都处于“第三只眼”的监控之下。棱镜门事件使信息社会的国家安全受到致命威胁,亚信会议也对信息安全给予严重关切。对于个人来讲,隐私保护同样重要,亟需寻找新的制衡机制。再次是数据独裁问题。目前数据管理最大的挑战是数据的开放与共享。通过大数据,不仅能够获得更加详尽的个人信息,而且通过进一步预测把群体特征直接强加于个人,必然导致基于数据的群体歧视。因此,我们必须加快制定关于各类数据的产权归属、保护以及数据采集、存储、加工、传递、检索、授权应用等的法律法规,明确数据拥有者、使用者、管理者、社会第三方等各方责任权利义务,厘清公民隐私权和知情权的界限,建立符合中国国情的数据应用法律体系;在国家层面出台政策,明确不同类别、不同层级政府部门在大数据建设中的定位,建立数据保密与风险分级管理机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07