
大数据时代的治理智慧_数据分析师
人类已经进入大数据时代。如果说计算机的普及仅仅解决了信息的可读化、可计算化问题,互联网解决了信息传递和服务问题,那么,大数据则解决了信息的分析和预测问题,大数据助力决策科学化,公共服务个性化、精准化。实践表明,大数据具有大容量、多样性、快速度、真实性等多种特征。利用数据融合、数学模型、仿真技术等,可以大大推动政府决策的科学性,甚至“揭示出原来没有想到或难以展现的关联”。全新的思维方式和行为方式,将带来全新的商业模式和发展路径。大数据带来的改变不仅使传统的思维方式和行为方式将面临巨大挑战,而且在公共服务领域,它有效集成信息资源的能力,将会为政府管理理念和治理模式的转变,提供强大的技术支撑。
政府作为大数据的最大占有者和最大消费者,必须在大数据管理和应用方面先行一步。美国等发达国家已经在政府管理方面取得了可喜成果。在公共管理领域,国内外一些先行者已经在运用大数据,通过多渠道采集数据、处理数据,增强了社会治理能力,实现了政府公共服务的技术创新、管理创新和服务模式创新。实现信息透明和共享,使外部利益相关者和内部利益相关者都能提高自身的工作效率,产生经济的经济效益和社会综合效益。通过评估公共部门的绩效,增强内部竞争,激励工作表现,提高公共建设效率,提升行政服务质量,降低政府管理成本。通过人口细分和定制政策,增强公共服务的针对性,提高工作效率和公众满意度。用政务智能代替或辅助人工决策,减少出错成本和福利管理中的诈骗。引导公共部门内部的创新,通过大数据工具和分析,对公共服务进行反馈,改善现有的方案,为公共部门创造新价值。
大数据在当代社会的作用是多方面的。大数据分析能去伪存真,用在公共服务领域可起到事半功倍的效果。通过大数据能够建立快速反应的公共安全管理系统、数据化调控过的公共交通系统、以人为本的综合社会管理系统、智慧预测下的公共卫生与医疗系统、创意与实用兼备的环境保护系统,还能够推进智慧城市的生长,让城市生活更美好。大数据之所以能够发挥如此巨大的作用,主要在于其多渠道的数据采集、高度开放的数据系统、精准识别的数据处理等关键技术。尤其是在智慧城市建设中,物联网是智慧城市的感觉器官,移动互联网是编织城市数据网的脉搏,云计算为城市各个单元之间协调行动、政府与公众之间有效合作提供了基础。当然,大数据也不是万能的。制约大数据发挥作用的因素主要的还不是技术问题,而是政府统筹管理的能力、制度建设,以及政府与社会公众的沟通协调等各个方面。因此,信息要实现共享融合,必须打破部门分割,建立以市场为主导的政府数据资源运行机制。以产业化、市场化为方向,打破数据垄断,建立以市场为主导的政府数据资源运行机制,按市场规律和风险等级分级开放政府数据资源,授权和鼓励第三方参与政府数据资源开发,并向市场购买社会数据及服务,鼓励基于大数据的服务和运营模式创新。
大数据固然能够成就人类的伟大梦想,为中国梦的实现增添一臂之力,但是,我们也应该看到我们在大数据面前必须应对各种前所未有的挑战。首先是数据质量问题。数据造假威胁数据质量的生命线,错误发现使数据的解读和呈现都出现致命的谬误,数据盲点导致了信息时代的信息缺席。其次是信息安全问题。信息社会的每一个人、每一个政党、每一个国家,都处于“第三只眼”的监控之下。棱镜门事件使信息社会的国家安全受到致命威胁,亚信会议也对信息安全给予严重关切。对于个人来讲,隐私保护同样重要,亟需寻找新的制衡机制。再次是数据独裁问题。目前数据管理最大的挑战是数据的开放与共享。通过大数据,不仅能够获得更加详尽的个人信息,而且通过进一步预测把群体特征直接强加于个人,必然导致基于数据的群体歧视。因此,我们必须加快制定关于各类数据的产权归属、保护以及数据采集、存储、加工、传递、检索、授权应用等的法律法规,明确数据拥有者、使用者、管理者、社会第三方等各方责任权利义务,厘清公民隐私权和知情权的界限,建立符合中国国情的数据应用法律体系;在国家层面出台政策,明确不同类别、不同层级政府部门在大数据建设中的定位,建立数据保密与风险分级管理机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23