
拥抱大数据时代 把复杂的事情简单化_数据分析师
以“大数据开启大未来”为主题的百度The Big Talk 第三期活动8月31日在北京举行。美国MIT人类动力实验室主任、可穿戴设备先驱、世界经济论坛大数据发展报告与个人数据报告的共同发起人阿莱克斯·彭特兰(Alex Pentland)做了有关“可穿戴设备和大数据收集”的一系列演讲,并与中国专家进行了交流与讨论。
大数据对于很多人来说并不陌生,比如通过分析银行卡的消费路径以及消费地点数据,一些连锁店的运营者就可以知道哪些店可以合并,哪些店需要撤销,哪些地方需要开设新店。但当前大数据的四大特征是,规模大、变化快、种类杂、价值密度低。彭特兰教授认为,随着大数据技术的进步以及网络安全技术的提高,大数据必将为我们带来一个更加便捷和多彩的未来世界。
在2014年4月24日百度技术开放日上,百度公司董事长兼CEO李彦宏现身并推出了百度大数据引擎。大数据引擎将百度在大数据的数据、能力和技术开放给行业,行业可以近身距离甚远的大数据盛宴,百度则寻到了一个新的增长点。
百度大数据引擎一共分为开放云、数据工厂和百度大脑三个部分。百度将基础设施能力、软件系统能力以及智能算法技术打包在一起,通过大数据引擎开放出来之后,拥有大数据的行业可以将自己的数据接入到这个引擎进行处理。同时,一些企业在没有大数据的情况下,还可以使用百度的数据以及大数据成果。
许多政府部门拥有海量大数据——交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,卫生部门拥有流感法定报告数据、全国流感样病例哨点监测和病原学监测数据,公安部门有大量的视频监控数据。如果这些数据与百度的搜索记录、全网数据、LBS数据结合,在利用百度大数据引擎的大数据能力,则可以实现智能路径规划、运力管理、流感预测、疫苗接种指导、安防追逃等等。
许多企业也拥有海量大数据,但它们几乎都没有大数据能力,坐拥海量数据却一筹莫展。如果能够应用百度大数据引擎,则可以对海量数据进行可靠低成本的存储,进行智能化的由浅入深的价值挖掘。在百度技术开放日上,中国平安便介绍了如何利用百度的大数据能力加强消费者理解和预测,细分客户群制定个性化产品和营销方案。
可以看出,大数据引擎的输入实际上是百度拥有的大数据以及行业已有的大数据,而输出则是各种行业应用成果,也就是大数据的“价值”。
有业内人士认为,大数据或许会在未来某个阶段被定义为:对人类世界的真实还原,并且不断的满足我们的任何愿望,曾经我们依靠它来决策一些事情,现在我们依靠它来直接抵达我们想要做的事情,我们所有的行为都已经成为我们决策的一部分。
TED创始人、被誉为“信息架构之父的” 理查德?沃曼(Richard Saul Wurman)认为,对大数据的分析利用应该进一步准确定义为“大理解”。在他看来,尽管今天很多人提到“信息爆炸”,但事实上人类在很多领域对数据的理解并不够深入,如在城市信息化、金融、医疗等领域,数据可以帮助我们把复杂的事情变得简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19