一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。这一小节,我们还是从scikit-learn出发,理解基本的分类原则,多动手实践。
Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集,可以作为判别分析(discriminant analysis)的样本。该数据集包含Iris花的三个品种(Iris setosa, Iris virginica and Iris versicolor)各50个样本,每个样本还有4个特征参数(分别是萼片<sepals>的长宽和花瓣<petals>的长 宽,以厘米为单位),Fisher利用这个数据集开发了一个线性判别模型来辨别花朵的品种。基于Fisher的线性判别模型,该数据集成为了机器学习中各 种分类技术的典型实验案例。
现在我们要解决的分类问题是,当我们看到一个新的iris花朵,我们能否根据以上测量参数成功预测新iris花朵的品种。
我们利用给定标签的数据,设计一种规则进而应用到其他样本中做预测,这是基本的监督问题(分类问题)。
由于iris数据集样本量和维度都很小,所以可以方便进行可视化和操作。
scikit-learn自带有一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。可以通过下面的方式载入数据:
from sklearn import datasets iris = datasets.load_iris() digits = datasets.load_digits()
该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。
可以用下面的方式画出任意两个维度的散点图,这里以第一维sepal length和第二维数据sepal width为例:
from sklearn import datasets import matplotlib.pyplot as plt import numpy as np iris = datasets.load_iris() irisFeatures = iris["data"] irisFeaturesName = iris["feature_names"] irisLabels = iris["target"] def scatter_plot(dim1, dim2): for t,marker,color in zip(xrange(3),">ox","rgb"): # zip()接受任意多个序列参数,返回一个元组tuple列表 # 用不同的标记和颜色画出每种品种iris花朵的前两维数据 # We plot each class on its own to get different colored markers plt.scatter(irisFeatures[irisLabels == t,dim1], irisFeatures[irisLabels == t,dim2],marker=marker,c=color) dim_meaning = {0:'setal length',1:'setal width',2:'petal length',3:'petal width'} plt.xlabel(dim_meaning.get(dim1)) plt.ylabel(dim_meaning.get(dim2)) plt.subplot(231) scatter_plot(0,1) plt.subplot(232) scatter_plot(0,2) plt.subplot(233) scatter_plot(0,3) plt.subplot(234) scatter_plot(1,2) plt.subplot(235) scatter_plot(1,3) plt.subplot(236) scatter_plot(2,3) plt.show()
效果如图:
如果我们的目标是区别这三种花朵,我们可以做一些假设。比如花瓣的长度(petal length)好像将Iris Setosa品种与其它两种花朵区分开来。我们可以以此来写一段小代码看看这个属性的边界是什么:
petalLength = irisFeatures[:,2] #select the third column,since the features is 150*4 isSetosa = (irisLabels == 0) #label 0 means iris Setosa maxSetosaPlength = petalLength[isSetosa].max() minNonSetosaPlength = petalLength[~isSetosa].min() print ('Maximum of setosa:{0} '.format(maxSetosaPlength)) print ('Minimum of others:{0} '.format(minNonSetosaPlength)) ''' 显示结果是: Maximum of setosa:1.9 Minimum of others:3.0 '''
我们根据实验结果可以建立一个简单的分类模型,如果花瓣长度小于2,就是Iris Setosa花朵,否则就是其他两种花朵。
这个模型的结构非常简单,是由数据的一个维度阈值来确定的。我们通过实验确定这个维度的最佳阈值。
以上的例子将Iris Setosa花朵和其他两种花朵很容易的分开了,然而我们不能立即确定Iris Virginica花朵和Iris Versicolor花朵的最佳阈值,我们甚至发现,我们无法根据某一维度的阈值将这两种类别很完美的分开。
我们先选出非Setosa的花朵。
irisFeatures = irisFeatures[~isSetosa] labels = irisLabels[~isSetosa] isVirginica = (labels == 2) #label 2 means iris virginica
这里我们非常依赖NumPy对于数组的操作,isSetosa是一个Boolean值数组,我们可以用它来选择出非Setosa的花朵。最后,我 们还构造了一个新的Boolean数组,isVirginica。接下来,我们对每一维度的特征写一个循环小程序,然后看一下哪一个阈值能得到更好的准确 率。
# search the threshold between virginica and versicolor irisFeatures = irisFeatures[~isSetosa] labels = irisLabels[~isSetosa] isVirginica = (labels == 2) #label 2 means iris virginica bestAccuracy = -1.0 for fi in xrange(irisFeatures.shape[1]): thresh = irisFeatures[:,fi].copy() thresh.sort() for t in thresh: pred = (irisFeatures[:,fi] > t) acc = (pred == isVirginica).mean() if acc > bestAccuracy: bestAccuracy = acc; bestFeatureIndex = fi; bestThreshold = t; print 'Best Accuracy:\t\t',bestAccuracy print 'Best Feature Index:\t',bestFeatureIndex print 'Best Threshold:\t\t',bestThreshold ''' 最终结果: Best Accuracy: 0.94 Best Feature Index: 3 Best Threshold: 1.6 '''
这里我们首先对每一维度进行排序,然后从该维度中取出任一值作为阈值的一个假设,再计算这个假设的Boolean序列和实际的标签Boolean 序列的一致情况,求平均,即得到了准确率。经过所有的循环,最终得到的阈值和所对应的维度。最后,我们得到了最佳模型针对第四维花瓣的宽度petal width,我们就可以得到这个决策边界decision boundary。
上面,我们得到了一个简单的模型,并且针对训练数据实现了94%的正确率,但这个模型参数可能过于优化了。
我们需要的是评估模型针对新数据的泛化能力,所以我们需要保留一部分数据,进行更加严格的评估,而不是用训练数据做测试数据。为此,我们会保留一部分数据进行交叉检验。
这样我们就会得到训练误差和测试误差,当复杂的模型下,可能训练的准确率是100%,但是测试时效果可能只是比随机猜测好一点。
在许多实际应用中,数据是不充足的。为了选择更好的模型,可以采用交叉检验方法。 交叉检验的基本想法是重复地使用数据;把给定数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。
应用最多的是S折交叉检验(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试 模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。
如上图,我们将数据集分成5部分,即5-fold交叉检验。接下来,我们可以对每一个fold生成一个模型,留出20%的数据进行检验。
留一交叉检验(leave-one-out cross validation)是S折交叉检验的特殊情形,是S为给定数据集的容量时情形。我们可以从训练数据中挑选一个样本,然后拿其他训练数据得到模型,最后看该模型是否能将这个挑出来的样本正确的分类。
def learn_model(features,labels): bestAccuracy = -1.0 for fi in xrange(features.shape[1]): thresh = features[:,fi].copy() thresh.sort() for t in thresh: pred = (features[:,fi] > t) acc = (pred == labels).mean() if acc > bestAccuracy: bestAccuracy = acc; bestFeatureIndex = fi; bestThreshold = t; ''' print 'Best Accuracy:\t\t',bestAccuracy print 'Best Feature Index:\t',bestFeatureIndex print 'Best Threshold:\t\t',bestThreshold ''' return {'dim':bestFeatureIndex, 'thresh':bestThreshold, 'accuracy':bestAccuracy} def apply_model(features,labels,model): prediction = (features[:,model['dim']] > model['thresh']) return prediction #-----------cross validation------------- error = 0.0 for ei in range(len(irisFeatures)): # select all but the one at position 'ei': training = np.ones(len(irisFeatures), bool) training[ei] = False testing = ~training model = learn_model(irisFeatures[training], isVirginica[training]) predictions = apply_model(irisFeatures[testing], isVirginica[testing], model) error += np.sum(predictions != isVirginica[testing])
上面的程序,我们用所有的样本对一系列的模型进行了测试,最终的估计说明了模型的泛化能力。
对于上面对数据集进行划分时,我们需要注意平衡分配数据。如果对于一个子集,所有的数据都来自一个类别,则结果没有代表性。基于以上的讨论,我们利用一个简单的模型来训练,交叉检验过程给出了这个模型泛化能力的估计。
Wiki:Iris flower data set
Building Machine Learning Systems with Python
转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09