
移动互联网和社区O2O是今年资本竞相追逐的两大领域,不少细分领域的明星公司动辄获得数千万元融资,例如丁香客、荣昌e袋、河狸家等。但创业公司在采集了大量用户行为数据后,如何进行有效的数据分析和应用成为众多创投人士关心的话题。在他们看来,大数据应用找到合适的变现模式,或成为引爆业内新一轮大发展的关键点,蕴藏大量投资机会。
青睐数据深度挖掘项目
“数据收集其实不难,难的是在行业方向的深度垂直挖掘和应用。”海银资本合伙人李东平说。他认为大数据应用最基本的问题是数据源的界定和获取,但这个问题目前行业已经解决得很好,各种入口不断被获取。面对海量信息,数据的深度垂直挖掘和应用至关重要,开发者对待数据的使用者需具备服务者的心态,这样才能发现并解决最核心的需求。
他以给中国移动做咨询的经历为例,移动网关能够捕捉用户开关机的数据,假设一个人北京关机、在成都开机,中间间隔三个小时,便意味着坐飞机到成都出差,如果数据处理的第三方能把这些数据统计出来,分析此人在未来是否为高频率旅行客户,再积累大规模类似的信息,做成一个服务包,这就对航空公司和票务公司具有很大价值。而作为服务商,可以将从前者拿到的优惠折扣提供给客户,来回就会产生双重的增值效应。
他说,大数据应用不能单纯依靠技术,还要借助在传统领域有所积累的行家。“比如,我收集微博上的言论,只能很简单地通过计算褒义词、贬义词的频率去判断一个人的态度或观点,但语言学家会用更多的分析方法判断一个人的特征。”他认为,技术不能代替一切,行业发展到深度挖掘和应用的层次,应该结合一些传统要素。
东信网络首席战略官郭利锋表示,他们会利用大数据对消费者先进行大概分类,然后再进行目标投放。随着大数据的沉淀和完善、计算机对人进行分析和匹配。未来的营销会从群体营销进入个体经销阶段,不是针对一群人,而是针对每一个人,围绕生活每个时点、围绕社交关系层,对每个人制定不同的营销策略,传递不同的表现内容,并且去引导其进行购买。他将此称之为“程序化营销过程”。
最关心大数据变现问题
当完成了数据采集、存储、处理、分析等一系列工作后,如何变现成了大数据应用最根本的问题,也是创投人士关心的话题。
李东平认为,数据要能赚钱关键在于发挥其预测的功能,而非仅仅统计。例如想设立一个投资电影的基金,需要判断电影是否值得投资,就会把导演、演员、电影类型、合作院线层级和数量、相应过往评论等数据全部搜集起来,放到构建的模型中去测量,百度就在做类似的工作,他认为很有前瞻性。
华创资本董事总经理曹映雪认为,数据变现的根本问题在于应用场景的开发和完善,目前还没有固定模式,但在金融领域已有较多尝试。比如,一些P2P平台会提到即时信贷:贷款人即时申请,平台10分钟就可以放贷。其中,是否放贷的决定以及放贷额度依靠的就是后台的金融大数据平台。这个大数据平台不仅会挖掘贷款人传统的银行数据,还通过申请者线上交易的支付宝、信用卡账单等第三方信息迅速集成,进而通过自身建立的模型给贷款者进行信用打分。“实现上述流程要求具有信息的快速处理能力。”他说。
除金融大数据,华创还接触过部分做视频大数据的团队,“视频大数据在大数据的云存储领域应该占到整个市场份额的50%以上。包括后续数据计算方面的一些商业场景的应用,值得关注和探讨。”他说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19