
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合问题,一直是模型训练中的难题,我们常常需要对这二者进行权衡,今天小编给大家整理、分享的就是欠拟合问题产生的原因以及解决办法,希望对大家有所帮助。
一、什么是欠拟合
欠拟合underfiting / high bias,就是指模型不能在训练集上获得足够低的误差,在训练集、验证集以及测试集上均表现不佳的情况。用偏差和方差来解释就是,欠拟合的时候为高偏差(偏差描述的是模型的期望输出与真实输出之间的差异)。
出现欠拟合的原因是模型尚未学习到数据的真实结构。因此欠拟合可以简单理解为:模型对训练数据的信息提取不充分,并没有学习到数据背后的规律,导致模型应用在测试集上时,无法做出正确的判断。
欠拟合,模型拟合程度不高,数据距离拟合曲线较远,不能够很好地拟合数据。
二、欠拟合解决办法
1、做特征工程,添加其他特征项,有时候欠拟合出现的原因是:特征项不够,没有足够的信息支持模型做判断。这时候我们可以通过添加其他特征项来解决。例如,“组合”、“泛化”、“相关性”、“上下文特征”、“平台特征”等等,都能够作为特征添加的首选项。
2、添加多项式特征,这种做法在机器学习算法里面很常用,举个例子,比如将线性模型通过添加二次项或者三次项使模型泛化能力更强。
3、减少正则化参数,正则化的目标是:防止过拟合的,现在模型是欠拟合,就需要减少正则化参数。
4、增加模型复杂度。模型如果太简单,就不能应对复杂的任务。我们可以通过使用更加复杂的模型,来减小正则化系数。比如可以使用核函数,集成学习方法(集成学习方法boosting(如GBDT)能有效解决high bias),深度学习等。
以上就是小编今天跟大家分享的一些欠拟合的相关知识,希望对大家处理和解决欠拟合问题有所帮助。其他机器学习和深度学习的知识,小编也会继续整理,希望大家多多关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22