京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合问题,一直是模型训练中的难题,我们常常需要对这二者进行权衡,今天小编给大家整理、分享的就是欠拟合问题产生的原因以及解决办法,希望对大家有所帮助。
一、什么是欠拟合
欠拟合underfiting / high bias,就是指模型不能在训练集上获得足够低的误差,在训练集、验证集以及测试集上均表现不佳的情况。用偏差和方差来解释就是,欠拟合的时候为高偏差(偏差描述的是模型的期望输出与真实输出之间的差异)。
出现欠拟合的原因是模型尚未学习到数据的真实结构。因此欠拟合可以简单理解为:模型对训练数据的信息提取不充分,并没有学习到数据背后的规律,导致模型应用在测试集上时,无法做出正确的判断。
欠拟合,模型拟合程度不高,数据距离拟合曲线较远,不能够很好地拟合数据。
二、欠拟合解决办法
1、做特征工程,添加其他特征项,有时候欠拟合出现的原因是:特征项不够,没有足够的信息支持模型做判断。这时候我们可以通过添加其他特征项来解决。例如,“组合”、“泛化”、“相关性”、“上下文特征”、“平台特征”等等,都能够作为特征添加的首选项。
2、添加多项式特征,这种做法在机器学习算法里面很常用,举个例子,比如将线性模型通过添加二次项或者三次项使模型泛化能力更强。
3、减少正则化参数,正则化的目标是:防止过拟合的,现在模型是欠拟合,就需要减少正则化参数。
4、增加模型复杂度。模型如果太简单,就不能应对复杂的任务。我们可以通过使用更加复杂的模型,来减小正则化系数。比如可以使用核函数,集成学习方法(集成学习方法boosting(如GBDT)能有效解决high bias),深度学习等。
以上就是小编今天跟大家分享的一些欠拟合的相关知识,希望对大家处理和解决欠拟合问题有所帮助。其他机器学习和深度学习的知识,小编也会继续整理,希望大家多多关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16