京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和‘真’模型一样,所以最终网络模型会因为复杂度太高而产生过拟合。今天小编就给大家整理了过拟合产生的原因及一些相应的解决方法,希望对大家机器学习中解决过拟合问题有所帮助。
一、什么是过拟合
过拟合定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。
过拟合(overfiting / high variance)表现为:模型在训练集上表现很好,但是在测试集上表现较差。也就是说模型的泛化能力弱。
简单理解过拟合,就是模型对训练数据的信息提取过多,不仅学习到了数据背后的规律,连数据噪声都当做规律学习了。
对比欠拟合理解起来会更容易:
二、过拟合产生原因
三、过拟合处理办法
1、重新清洗数据,过拟合出现也有可能是数据不纯,这种情况下我们需要重新清洗数据。
2、数据增强,也就是获取和使用更多的数据集。给与模型足够多的数据集,让它在尽可能多的数据上进行“观察”和拟合,从而进行不断修正。但是需要注意的是,我们是不可能收集无限多的数据集的,所以通常的方法,就是对已有的数据进行,添加大量的“噪音”,或者对图像进行锐化、对旋转、明暗度进行调整等。
3、采用正则化方法。加入正则化项就是在原来目标函数的基础上加入了约束。常用的正则化项有L1.L2.当目标函数的等高线和L1.L2正则化损失函数第一次相交时,得到最优解。
L1正则化项约束后的解空间为多边形,这些多边形的角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。
L2正则化项约束后的解空间为圆形,图像上的棱角圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,参数不断趋向于0.最后得到的就是很小的参数。
4、采用dropout方法。

运用了dropout方法,就相当于训练了非常多的,仅仅只有部分隐层单元的神经网络,每一个这种半数网络,都能够给出一个分类结果,这些结果中,有正确的,也有错误的。随着训练的进行,大多数半数网络都能给出正确的分类结果。这样一来,那些少数的错误分类结果对于最终结果就不会哦造成大的影响。而且dropout通过减少神经元之间复杂的共适应关系,从而也提高了模型的泛化能力。
5、提前结束训练
也就是early stopping,在模型迭代训练时,对训练精度(损失)和验证精度(损失)进行记录,如果模型训练的效果不能够再提高,例如训练误差一直降低,但是验证误差却不再降低甚至上升的情况,我们可以采用结束模型训练的方法。
6、集成学习
集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28