京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。
一、首先来回顾一下什么是泛化能力
泛化能力(generalization ability),百科给出的定义是:机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。简单来概括一下,泛化能力就是一个机器学习算法能够识别没有见过的样本的能力,通俗点说就是学以致用,举一反三的能力。机器学习方法训练出一个模型,我们会希望这个模型不但是对于已知的数据(训练集)性能表现良好,而且对于未知的数据(测试集)也能够表现良好,这就表明这个模型具有良好的泛化能力。在实际应用子中,模型的过拟合(overfitting)与欠拟合(underfitting)能够最直观的体现出泛化能力的好坏。
根据泛化能力强弱,可以分为:
欠拟合:模型不能在训练集上获得足够低的误差;
拟合:测试误差与训练误差差距较小;
过拟合:训练误差和测试误差之间的差距太大;
不收敛:模型不是根据训练集训练得到的。
二、简单介绍正则化
正则化regularization的目标为:模型的经验风险和模型复杂度之和达到最小,即结构风险达到最小。也就是正则化的目的是为了防止过拟合, 从而增强泛化能力。
我们通常将正则化定义为:对学习算法的修改,目的是减少泛化误差而不是训练误差
在训练次数足够多,以及表达形式足够复杂的情况下,训练误差能够无限小,可是这并不代表着泛化误差的减小。相反的,一般情况下,这样会导致泛化误差的增大。最常见的例子是:真实数据的分布符合二次函数,但是欠拟合一般会将模型拟合成一次函数,而过拟合通常将模型拟合成高次函数。根据奥卡姆剃须原则:在尽可能符合数据原始分布的基础上,更加平滑、简单的模型,往往更加符合数据的真实特征。所以,我们必须采用采用某种约束,这也就引出了的正则化。
三、正则化---提高模型的泛化能力
按策略正则化可以分为以下三类:
(一) 经验正则化:利用工程上的技巧,实现更低的泛化误差,例如:提前终止法、模型集成、Dropout等;
1.提前终止(earlystop)
一种最简单的正则化方法,在泛化误差指标不再提升后,提前结束训练
2.模型集成(ensemable))
通过训练多个模型来完成该任务,这些模型可以是不同的网络结构,不同的初始化方法,不同的数据集训练出来的,也可以是采用不同的测试图片处理方法。总结来说就是,利用多个模型进行投票的策略
3.Dropout移除一部分神经元
Dropout采用的是"综合起来取平均”的策略,来防止过拟合问题。不同的网络会产生不同的过拟合问题,取平均会让一些“相反的”拟合有互相抵消的可能,整个Dropout过程就相当于 对很多个不同的神经网络取平均。而且因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现,这样会减少神经元之间复杂的共适应关系
(二)参数正则化:直接提供正则化约束,例如:L1/L2正则化法等;
L1/L2正则化方法,就是最常用的正则化方法,它直接来自于传统的机器学习。
L1正则化:
L2正则化:
(三)隐式正则化:不直接提供约束,例如:数据有关的操作,包括归一化、数据增强、扰乱标签等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31