京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源:接地气学堂
作者:接地气的陈老师
“推动业务”是数据人最怕的词了。妈耶,还推动业务呢,我自己不被业务部门天天追着屁股要数就不错了,咋个推动法。可领导们最喜欢提这种要求。今天我们就来详细聊聊。首先要分清的是,提这个问题的人是谁,很重要。
问:以下两种情况有什么区别?
A、业务部门领导问:数据分析,如何推动业务发展?
B、数据部门领导问:数据分析,如何推动业务发展?
答:主导权不一样。业务部门问了建议,可以直接去落地。数据部门只是个辅助,说的话如果不对业务胃口,就永远悬在天上。就像开车,抓方向盘的人听了建议能换路线,做副驾驶的哔哔太多,很容易造嫌弃。所以提问人不同,应对思路是不一样的。今天我们先讲业务来提问。
1
推动业务的错误做法
很多同学一听“数据推动业务”,直观的想法就是:
这么干肯定被业务喷死
随便问几个问题:
1、谁来搞?
2、啥时候搞?
3、搞到多少?
4、花多少钱搞?
5、有这钱我搞别的不行吗?
6、用大转盘搞还是浇花种树搞?
7、浇花种树是送实物水果还是券?
8、用券搞还是积分搞还是礼品搞?
9、券派10、20、30、40、50……?
10、搞起来了但是转化率跌了行不?
一个都回答不上来。
错误在哪里?错误在把业务想简单了。即使看似简单的:“活跃率低了”真要付诸行动,也得考虑上边列出来的众多环节。并且这些环节里,有一些不是数据能直接解决的(比如签到活动的创意设计,浇花、种树、养金猪、造电器……这些靠加减乘除可算不出来)。所以想要推动业务,就得认真分类业务工作,找到数据的发力点。
2
推动业务的切入点
业务解决问题,从决定立项到执行完成,分为四大环节(如下图所示)
在整个过程中,数据分析不能包打天下。作为一种理性、量化的工具,更适合用于解决战略、战术决策工作,适合战况监控。至于战斗动作,数据只能作为参考,一个有经验的策划远远比加减乘除管用。因此合理安排输出产物,才能更好地推动业务去行动,而不是让业务患上数据依赖症:“你用人工智能大数据分析一下我这一幅画该几点红几点绿”——数据不是这么用的。
3
推动业务的顺序
清晰了输出内容,就可以规划推动顺序了。这里很多新人会犯个错误:指望一步到位,自己拼命做一个很细很细,细到可以执行的方案就算成功。这样一来直接替代了业务的工作,把自己累得半死。二来业务也不领情——“你算老几,你替我拿主意??!!”
要知道:没人能未卜先知,在一开始规划清楚所有事。推动业务的过程是循序渐进,在不断共识的基础上,从不清晰到清晰,逐步深入的。特别是一些关键节点:谁来负责,出多少预算,考核指标是什么,考核多少。这些是需要请示部门领导,甚至部门之间共识,和老板共识才能确认的。所以要沉住气,一步步来(如下图)。
4
推动业务的坑点
本篇讨论建立在“业务部门领导提问且亲自下场”的基础上,所以想做数据推动,是有强力的上层支持的。但有了尚方宝剑不见得真的敢拔出来随便砍人。在具体推动过程中,有一些新人常见坑点,必须注意:
坑点1:直接信了业务的判断。注意,业务的判断不见得都是基于数据,甚至不见得都是事实。很常见的,比如:
是滴,各种情绪、立场、单个事件,都会干扰到人们的判断。所以业务跟你说:我们活跃率不行;我们的转化还得加强;我们的用户体验不好的时候,一定要追溯的问题源头,落实到一个数字或者一件事上,具体讨论到底是啥问题。
坑点2:没有相关指标分析。很多非利润、成本类指标,都容易产生虚荣效应:
1、容易被刷高:大转盘一摇,活跃率铁高!
2、无实际产出:活跃高了又怎样,他又不买
3、无长期效果:短期刺激完又怎样?不做活动又跌
所以当业务关注这些指标的时候,一定要做相关的指标分析,特别是要关联到一个有最终考核意义的指标,比如利润、成本之类。至少要保证这几个主要指标是联动的,允许有虚荣成分,但是不能全是水。
坑点3:没有事前定义目标。这也是业务经常干的事:
1、我要提升活跃率——从多少提升到多少?不知道!
2、我要提升消费——从多少提升到多少?不知道!
3、我要拉动业绩——从多少拉动到多少?不知道!
4、我要激活用户——啥叫沉睡?咋算激活?不知道!
是滴,很多业务部门干活完全是凭经验,凭感觉,凭习惯。完全没思考过到底考核啥指标,又到底该做多少。一问就是不知道,要么就是说:“和自然状态下对比下?”问题是很多业务根本就是促销不断,活动不停,咋个自然状态法。所以想做数据推动,必须认认真真看数据定目标,不能含糊。
坑点4:过往策略没有收集。过往用过的策略目标,打法、效果,全部没有收集。导致需要数据支持的时候不知道看啥,最后还是凭经验决定(如下图)。
坑点5:创新方案没有标签。同上,创新方案想做测试,要有具体的标签才好后期做对比分析,不然只看一个很粗的响应结果,还是没法指导到设计的细节工作。
坑点6:测试方案不看整体。这是上一个问题的另一个极端,测试的时候太过计较细节,比如页面颜色,按钮左边右边,优惠券20、30纠结太多,导致见细节不见整提,到了用户那里:这啥破活动,不玩了。
坑点7:执行过程没做监控。急着上线,需求反反复复改,最后埋点没做好,数据没打通,结果吗,自然……
总之,数据推动业务,就像开车开导航一样。大家都觉得导航好用,可最后支撑导航功能的,却需要GPS定位,道路图,实时数据反馈,路线规划算法等等复杂系统。理论说起来容易,执行起来只能看菜下饭,且行且珍惜了。况且这还是在业务部门推动的情况下,如果是数据部门自己想推动,那就更得付一番精力。有兴趣的话,本篇集齐60在看,我们下一篇分享:数据部门如何提升数据驱动力。敬请期待哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05