京公网安备 11010802034615号
经营许可证编号:京B2-20210330
感知机(Perceptron)或者叫做感知器,是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络,是机器学习领域最基础的模型,被誉为机器学习的敲门砖。
感知机是生物神经细胞的简单抽象,可以说是形式最简单的一种前馈神经网络,是一种二元线性分类模型。感知机的输入为实例的特征向量,输出为实例的类别取+1和-1.虽然现在看来感知机的分类模型,大多数情况下的泛化能力不是很强,但是感知机是最古老的分类方法之一,是神经网络的雏形,同时也是支持向量机的基础,如果能够将感知机研究透彻,对我们支持向量机、神经网络的学习也有很大帮助。
一、感知机模型
感知机的几何解释:线性方程
二·、感知机算法
1.原始形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.w = np.zeros([1, len(train_data.T)], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result def nomalize(self, x): if x > 0 : return 1 else : return -1 def model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, x, y): # w = w + n*y_i*x_i self.w = self.w + self.eta*y*x # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 while count > 0: # count-- count = count - 1 if len(self.train_data) <= 0: print("exception exit") break # random select one train data index = randint(0,len(self.train_data)-1) x = self.train_data[index] y = self.real_result.T[index] # wx+b predict_v, linear_y_v = self.model(x) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(x, y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 50000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()2.对偶形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.alpha = np.zeros([train_data.shape[0], 1], int) self.w = np.zeros([1, train_data.shape[1]], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result self.gram = np.matmul(train_data[0:train_data.shape[0]], train_data[0:train_data.shape[0]].T) def nomalize(self, x): if x > 0 : return 1 else : return -1 def train_model(self, index): temp = 0 y = self.real_result.T # Here are matrix dot multiply get one value for i in range(len(self.alpha)): alpha = self.alpha[i] if alpha == 0: continue gram_value = self.gram[index].T[i] temp = temp + alpha*y[i]*gram_value y = temp + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def verify_model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, index, x, y): # alpha = alpha + 1 self.alpha[index] = self.alpha[index] + 1 # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 train_data_num = self.train_data.shape[0] print("train_data:", self.train_data) print("Gram:",self.gram) while count > 0: # count-- count = count - 1 if train_data_num <= 0: print("exception exit") break # random select one train data index = randint(0, train_data_num-1) if index >= train_data_num: print("exceptrion get the index") break; x = self.train_data[index] y = self.real_result.T[index] # w = \sum_{i=1}^{N}\alpha_iy_iGram[i] # wx+b predict_v, linear_y_v = self.train_model(index) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(index, x, y) for i in range(len(self.alpha)): x = self.train_data[i] y = self.real_result.T[i] self.w = self.w + float(self.alpha[i])*x*float(y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size-1): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.verify_model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 1000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # train_data = np.mat([[3,3],[4,3],[1,1]]) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28