京公网安备 11010802034615号
经营许可证编号:京B2-20210330
无监督学习是机器学习里的一种学习方式,下面将给大家具体解释一下无监督学习到底是什么?
首先我们可以对照监督学习来对比理解一下无监督学习的概念。
机器学习中,监督学习是一种明确的训练方式,你能够很明确知道自己得到的是什么,并且由于明确了目标,所以能够衡量效果。在监督学习中,我们需要需要给数据打标签,然后根据这些标注了的数据来拟合一个假设函数。
而无监督学习则不同,它没有明确目的,我们无法提前知道结果是什么,所以几乎无法进行效果衡量。而且无监督学习中数据没有标签,我们需要把这些无标签数据输入到一个算法中,然后要求这个算法帮我们在这个数据集中找到它的内在结构。
无监督学习常见的两种类型是:聚类和数据集变换。
简单说聚类就是一种自动分类的方法,将数据划分成不同的组,每组包含相似的物项。但是我们可能并不清楚聚类后的几个分类每个代表什么意思。举个例子,用户在某个网站上传了照片,网站可能想要将同一用户的照片分在一组。但网站对于每张照片是谁,照片集中总共出现了多少个人并不清楚。比较明智的解决方法是提取所有照片中的人脸,把看起来相似的人脸分在一组,这样就完成了对图片的分组了。
数据集变换,就是创建数据集新的表示算法,对于这种新的表示,机器学习算法可能更容易理解。
常见的应用是降维,就是找到能够表示拥有许多特征的高维数据的一种新方法,用较少的特征就可以概括其重要特性。看上去很像压缩,但其实是为了既能尽可能保存相关的结构,又能同时降低数据的复杂度。另一个应用就是找到“构成”数据的各个组成部分,比如在文本文档中进行关键字提取。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21