京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python现在在各行各业都有十分广泛的应用,而且近几年的市场需求也不断扩大,未来的发展前景也十分广阔,许多小伙伴想要去学习python来提高自己的职场竞争力。python学习难吗?应该怎样规划学习路线?下面跟小编一起来看吧。
必学知识:python基础语法、字符串、安装python相关软件
在这一阶段大家主要是对python有一个初步了解,建立正确的python编程逻辑
必学知识:Pandas数据清洗、python爬虫、python数据可视化(Matplotlib、Seaborn、echarts/' style='color:#000;font-size:inherit;'>Pyecharts)、python机器学习算法等
第二阶段主要是提高利用python各种工具进行数据分析的能力,需要具有使用python进行数据分析整体思路、并针对业务做出模型最优化选择,善用机器学习解决用户画像、精准营销、风险管理等商业问题
python学习规划第三步:分方向发展
这一阶段需要分方向发展了,一般来说分为技术和业务两个方面。如果想要在技术方面有所成就,可以进一步学习数据科学家或者人工智能相关知识。如果选择业务方面,就要以企业的运营和管理者为目标而努力。前者的话,对技术方面要求比较高,除了学习python高级编程之外,需要进一步学习机器学习、深度学习、技术开发、人体网络工学等内容。后者需要加深对业务以及整个行业市场的了解,利用python制作企业以及行业的数据分析报告,从而预测出未来行业的发张趋势,做出正确决策。
之所以把分方向发展放在第三阶段,是因为小编觉得,前两个阶段都算是入门阶段,只有亲自使用过python,才能确定自己的工作对python的需要程度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21