
如何用python绘制简单条形图呢?这里离不开matplotlib的使用。
条形图是数据可视化图形中很基础也很常用的一种图,简单解释下:条形图也叫长条图(英语:bar chart),亦称条图(英语:bar graph)、条状图、棒形图、柱状图、条形图表,是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列,或用多维方式表达。
那么一个普通的条形图是长什么样子的呢?
当!当!当!就是下图的这个样子:
图先亮出来啦,接下来研究这个图是怎么画的吧,先看一下原数据长什么样子:
实际画图的流程和画折线图很相近,只是用到的画图函数不一样,绘制条形图的函数plt.bar():
由于这只是最简单的一个条形图,实际上条形图的函数plt.bar()还有不少可以探索的参数设置,和对折线图函数plt.plot()的探索差不多,有兴趣的孩子可以自己去进行探索哦。
当然也可以有其他的设置,比如说上图中的线条高低参差不齐,这是因为x轴的数据是按照学校名称进行排序的,那么可不可以按照分数的高低进行排序呢?也就是让所有的长方形按照从高到矮或者从矮到高的顺序进行排列?
当然可以啦!这里需要强调的是,条的高低排列等信息都是来源于原数据的,要想让条形的顺序发生改变,需要对画图的来源数据进行更改呢!
把原数据逆序排序后截取前十名数据赋值给data_yuwen,作为新的数据源传入画图函数plt.bar(),画出来的图自然就不一样了。
先看一眼数据长什么样子:
根据这个数据源绘制出的图形如下,由于用来画图的数据进行了降序排序操作,所以生成条形图的条也会进行降序排序展示:
很多时候,我们常见的条形图还有另一种展现形式,那就是横向的条形图,比较火的那种动态条形图绝大多数也都是横向的条形图,那么横向的条形图如何绘制呢?
其实也不难,只要清楚plt.bar()函数中主要参数的作用就可以了!条形图函数中有五个主要参数,分别是x,height,width,bottom,orientation。其中x控制的是每个条在x轴上位置,height控制的是每个条的长度,width控制的是每个条的宽度,bottom控制的是每个条在y轴方向的起始位置,orientation控制的是条形的方向,是纵向还是横向,默认是纵向的。
通过一个小例子理解下这几个参数的作用:
上边的几行代码输出的图形如下:
对比着代码和实际输出的条形图,各个主要参数的作用是不是一目了然啦?
理解了这几个参数作用后,纵向的条形图转换成横向的条形图就没什么难度了!
温馨提示:数据和标签一定要匹配,即plt.bar()重点的数据要和plt.yticks()中提取出来的标签一一对应,一旦不匹配,整个图展现的结果就是一个错误的结果!
上述代码生成的条形图如下:
感觉上边这种生成横向条形图的方式有点点绕,和人们的习惯认知有点不大一样,难道画一个横向条形图就非得转变自己的习惯认知这么反人类吗?
当然不是的,实际上有更简单的方法绘制一个横向条形图,之所以没有一开始就直接用这种简单的方法,也是为了让大家体会下条形图参数的灵活设置而已,而且如果比较绕的方法都能理解了,简单的方法理解和运用起来就更没有难度了啊!
不卖关子了,我们来认识下和plt.bar()函数类似的plt.barh()函数。
plt.barh()函数是专门绘制水平条形图的函数,主要的参数有:
效果图:
和用plt.bar()函数绘制的横向条形图一毛一样对不对?以后有需求绘制横向条形图,尽量用plt.barh()函数吧,毕竟它是专门绘制这种类型图的,简单好用。
然而实际工作中对于条形图的需求不只是这些,比如例子中只是对各个学校语文成绩的展示,有时候需要各个学科的成绩同时展现在一幅条形图中,有时候也需要绘制堆积条形图对各学科的成绩以及总成绩进行展示,这些图又该如何绘制呢?其实只要理解了各个参数的含义,绘制这些图也不在话下,至于具体怎么画,且看下回分解啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28